THE

AMSTRAD NOTEPAD
ADVANCED

USER GUIDE

THE AMSTRAD
NOTEPAD
ADVANCED USER GUIDE

ROBIN NIXON
Programs written and documented by
Chris Nixon

SIGMA PRESS - Wilmslow, United Kingdom

Copyright ©, R. Nixon and C. Nixon, 1993
All Rights Reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior written permission.

First published in 1993 by

Sigma Press, 1 South Oak Lane, Wilmslow, Cheshire SK9 6AR, England.
British Library Cataloguing in Publication Data

A CIP catalogue record for this book is available from the British Library.

ISBN: 1-85058-515-6

Typesetting and design by
Sigma Press, Wilmslow

Printed in Malta by
Interprint Ltd.

Distributed by

John Wiley & Sons Ltd., Baffins Lane, Chichester, West Sussex, England.

Acknowledgement of copyright names

Within this book, various proprietary trade names and names protected by copyright
are mentioned for descriptive purposes. Full acknowledgment is hereby made of all
such protection.

PREFACE

At first sight it might seem a step backwards and a rather surprising move for
Amstrad to release a 64K Z80-based ‘laptop’-type computer when the market
definitely looks like PC-compatible is the way to go, and laptops being the fastest
growth area.

But maybe that’s the point. There is a large group of people who know that all they
need is a cheap, easy-to-use and (as the Notepads proudly proclaim) user-friendly
interface - without having to learn about using DOS or Windows.

Amstrad are renowned for using tried and tested formulae, which the Z80 certainly is
- just look at how well they did with the PCW family. What's more, Z80s are cheap,
as are the additional chip sets that go with them and, because of their low power
consumption, you get up to 40 hours use out of an NC100 - about 10 times more than
with most PC-compatible laptops.

And Amstrad made a very sensible decision in their choice of software. By porting
Protext across (o it they have a top-selling word-processor also available on a number
of platforms, including the Amstrad CPC and PCW, Archimedes, Atari ST, Amiga
and PC compatibles. In one go, Amstrad have a product that can be file compatible
with just about every other popular computer.

By removing Protext’s command mode (well, not entirely, as you'll see later), they
came up with a very simple system of colour-coded key combinations so that, no
matter where you are in the Nolepad, you can move to any other in-built application
at a key press. But, in my opinion, one of the best things to be incorporated was the
BBC Basic ROM which allows you to adapt the computer fully to your own
requirements.

And that is what this book concentrates on In it you will discover how you can use
BBC Basic to write i) y the in-built
with the user never even knowing they are in Basic.

Even if you're not a programmer, the explanations of how the Notepad works should
interest you, but if not a large proportion of this book is taken up with ready-made

iv The Amstrad Notepad

programs ready for you to type in and run. So, without needing to know a thing about
programming, you can add a writing style checker to your Notepad, or there’s a full
scientific calculator, a food additive database, a graphical world time zone viewer, a
mortgage calculator and a whole lot more.

For the more technically minded, full details on the Notepad’s firmware calls,
input/output ports and system variables are provided, including how you can make
use of them yourself. You’ll even learn how to create entire system applications to
run from a RAM card. Everything you need to know in order to do this is in this
book, even down to a fully working Z80 disassembler you can type in and use
immediately.

In fact this book is packed with undocumented information about the Notepad (and
even the Z80 microprocessor itself) that you are unlikely to find anywhere else.
Along with the comprehensive index, you will find it to be a complete, one-stop
reference to using and writing Notepad programs, as well as a valuable source of
additional software for your Notepad.

Thanks are due to Mark Tilley and Gavin Every at Amor Lud (the programming
team) as well as to Cliff Lawson the Notepad Project Manager at Amstrad Plc for
much of the technical information that appears here. Because these details came
directly from the programmers you can be sure that they are as accurate as possible.

Thanks also to John for his i i in the ion of this
book, and to Richard Russell, the author of the Notepad BBC Basic interpreter, for
his assistance with the final manuscript.

Robin Nixon

To Julie and Naomi

Contents

SECTION 1 - THE PROGRAMS .

THREE GOLDEN RULES .. .
GET IT RIGHT . .
AUTO .
USING THE PROGRAM
HOW IT WORKS. . .
BIOMON.BAS. .
USING THE P!
HOW IT WORKS. . .
CALC.BAS
USING THE PROGRAM . .
HOW IT WORKS. . .
CHART.BAS
USING THE PROGRAM
HOW IT WORKS
COOKIEBAS
USING THE PROGRAM
HOW IT WORKS. . .
DEVIL.BAS. .
USING THE
HOW IT WORKS.
FOOD.BAS reees
USING THE PROGRAM . .
HOW IT WORKS. . .
INKEY.BAS.........
USING THE PROGRAM
HOW IT WORKS.
MORTGAGE.BAS
USING THE PROGRAM
HOW IT WORKS.

vi The Amstrad Notepad

READYREC.BAS
USING THE PROGRAM
HOW IT WORKS.

SCALES.BAS
USING THE PROGRAM
HOW IT WORKS.

STYLE.BAS.
USING THE PROGRAM
HOW IT WORKS. . . .

TIMEZONE.BAS
USING THE PROGRAM
HOW IT WORKS. . ..

USING THE PROGRAM . .
HOW - TT'WORKS: o ioveiesss s3esmyes saeveisi 55 a0emsss o 556

SECTION 2 - REFERENCEc.ccoivviniinnnne.. 121

.122
. 126

1. CONTINUED . . . FROM THE NOTEPAD MANUAL. .
REGISTER VARIABLES

2. UNDOCUMENTED FEATURES. . .129
TRANSFERRING BBC BASIC PROGRAMS. «129
QUICK MACRO ASSIGNING +129
LINE DRAWING CHARACTERS. . 130
PAGE DISPLAY MODE. 130
USING THE FILE SELECTOR . 131
PEEKING ABOUT. L131
UNDOCUMENTED SELF-TEST. 133
SAVING THE SCREEN. . . . 134

3. WRITING EXTERNAL PROGRAMS
USING THE NOTEPAD'’S LCD DISPLAY ..

4. THE NOTEPAD’S INPUT/OUTPUT PORTS.ovvnneiinnnnnnnn 151

5. THE JUMPBLOCK ENTRIES . .157
KEYBOARD FUNCTIONS. . . . 158
SCREEN DISPLAY FUNCTIONS. . . 160
PARALLEL AND SERIAL PORT FUNCTIONS. . 3
CLOCK FUNCTIONS L. 169
MEMORY ALLOCATION FUNCTIONS .

FILE I/O FUNCTIONS..

MISCELLANEOUS FUNCTIONS . .

Advanced User Guide vii

6. THE SYSTEM VARIABLES. . .182

BBC BASIC MAIN SYSTEM VARIABLES. . 185
7. RECOVERING FROM LOCK-OUTS . . .o vvvuvennnronnneannnnann 186
8. THE COMPLETE Z80 INSTRUCTION SET. 188
9. THE UNDOCUMENTED Z80 INSTRUCTIONSvvvnvvvinnnnnn 219
SECTION 3 - APPENDICES........ccotietnirnncnennnnn.. 225
APPENDIX 1: NC100 JUMPBLOCK ENTRY POINTS.c0vvunn. 226
APPENDIX 2: INPUT/OUTPUT PORTS (&0000 - &00FF). 229
APPENDIX 3: KEYBOARD SCAN CODESovvviinnirnnnannnns 230

APPENDIX 4: THE COMPLETE SET OF Z80 INSTRUCTION CODES. . . 232
APPENDIX 5: NEW NOTEPAD MODELS. . .

APPENDIX 6: EXTRAS0vvvvnnn eesaanes +..248
GET CONNECTED WITH LAPCAT. . v
EXPAND YOUR NOTEPAD WITH A RAM CARD
ORDER THE DISK OF THE BOOK . .
ORDER FORM

SECTION 1

THE PROGRAMS

‘Whether or not you are a this ion of has been designed
to accompany the applications provided with your Notepad. They have been written
in such a way that no knowledge of programming is required to use them and you can
call them up by simply pressing [Function][B], so you don’t even need to know any
Basic commands. Just type in the programs, check them and save them.

On the other hand, detailed descriptions accompany every program in this section,
including line by line running commentaries, descriptions of the functions and
procedures used, and an explanation of all the main arrays and variables.

Using all this information in conjunction with the listings you will be able to pick up
on the various methods used and then incorporate any ideas you like into your own
programs. To this end the variety of programs has been kept as wide as possible and
a broad range of programming styles and techniques have been used, covering areas
such as using the built-in assembler, handling strings, variables and arrays, processing
and storing data, directly accessing the display RAM, the non-standard Notepad VDU
codes and much more.

All the programs are written in BBC Basic and some contain sections of assembly
language to achieve effects that, if written in Basic, wouldn’t be possible, would take
too much space to write, or would run unacceptably slowly.

The programs are self-contained, and range from a useful scientific calculator to a
world clock featuring a map of the earth. There’s also a version of the classic game
Towers of Hanoi to while away the odd hour, and if you are fond of writing you

2 The Amstrad Notepad

might like to pass your efforts through the compact style checker and see how they
measure up.

may be i i in the assembly language routine that
performs an instant scan of the keyboard, in a similar fashion to BBC Basic’s
negative INKEY(-n), (as opposed to Basic’s INKEY or INKEYS, which can only
return keys at the speed of the current keyboard repeat rate). There’s a full chart of
the Notepad’s character set — useful for designing screen layouts or games, and a
complete Z80 disassembler so you can delve into the inner workings of other
programs.

THREE GOLDEN RULES

There are three Golden Rules you must bear in mind when typing in program listings,
and which you should always follow in order to prevent typing mistakes — or even
crashing or erasing programs.

Golden Rule number one:

Make sure you save your work before you try it out. It’s very tempting to type RUN
every so often to see the effect so far, but even if you save the program first you are
strongly advised against it — especially where there is machine code involved, as you
could lock-up your Notepad.

Golden Rule number two:

Read the listing carefully. A common error is to confuse any of the following for
each other: Lower case "I" (lower L), "i" (lower I) and "1" (one). Another common
mistake is to confuse the capital letter "O" with the number "0".

Golden Rule number three:

Don’t delete any REM lines or lines containing just a colon ":". As a matter of style
most of the programs in this book avoid GOTOs in the main code, but all of them
contain at least one ON ERROR GOTO line (and listings from other sources may
make more liberal use of GOTOs). So, if any GOTOs happen to point at a line that
you've deleted as being unnecessary you'll get into all sorts of bother.

GET IT RIGHT

If all else fails (or even if you simply prefer not to type in the programs), you can
order a disk containing all the listings fully tested and ready to run, along with a lead
and software to transfer them to the Notepad, using the form in Appendix 6.

Please also remember that a Notepad without a RAM card may only be able to hold
two to three or so small to medium Basic programs at any one time. If you really
want to make use of your computer and not run into memory storage problems you
should buy a RAM card. One such source is also given in Appendix 6.

Advanced User Guide 3

AUTO

Menu system

4

S
4235
4338
235
7187

AUTO, the menu system for Basic programs

This is the first and most important of the programs because it provides an
easy-to-use interface for running the other programs, without needing to enter BBC
Basic’s command mode.

Tt works by taking advantage of a feature built into Notepad Basic which checks for a
file called AUTO whenever you enter Basic (normally by pressing [Function][B]). If
such a file exists Basic proceeds to load and run it, rather than just dropping into
command mode.

USING THE PROGRAM

Type in the listing and save it as AUTO before trying it out. Note that you must NOT
call it AUTO.BAS (although all the other programs should use the .BAS extension),
or the file will not be recognised by Basic’s initialisation routines. It is also essential
that you save the program before running it in case you have made any typing
mistakes and something goes wrong or, perhaps, you did type it in correctly but
accidentally loaded in another program while testing it.

Once saved type:
RUN

and press [Return]. You should then sce the Notepad’s standard file selector which
you can now use to call up a program in the same way you might select a file for
editing in the word processor.

Because this program prevents access to Basic’s command mode you might wonder
how you are now going to be able to type in more programs. The answer’s simple:
you can exit from AUTO at any time by pressing [Stop]. You are then dropped into
command mode and, if you want to enter a new program, type:

NEW

4 The Amstrad Notepad

and off you go. Or, if you accidentally exited from AUTO you can get back in by
pressing [Function][B].

HOW IT WORKS

The program is described as follows, with line numbers on the left and explanations
on the right.

30-40 Clear memory and dimension A% so that it’s just big enough to
hold the machine code which will be assembled.

50-60 Assemble the code and call it.

70 If the first character of the file name is O then there is no file
name so print a message and exit.

80-110 Copy the file name returned by the machine code routine into the
variable RS,

120 Check whether the file name has an extension of .BAS. If not, it

is not a Basic program (at least, not as far as the program is
concerned, because the .BAS extension is the recommended
method of declaring whether a file is a Basic program). So, if
not, refuse to attempt to run it and call the file selector again.

130 Load the selected program into memory (replacing AUTO) and
run it.
160-190 Prepare for a two-pass assembly using a FOR...NEXT loop and

set the program point (P%) to the machine code destination
address at the start of cach pass.

200 Call the Notepad’s built-in File selector.

210 Set the register DE to point to the start of where the File selector
will have stored a file name if one was selected.

220-250 If the Carry flag is set then no file was selected because the user

pressed [Stop], so set the first byte of the file name which is to
be passed back to Basic (pointed to by DE) to a zero to indicate
this, and then return.

270-340 A file name was selected so copy all the characters in the name
to a known location in memory starting at ‘buffer’ and then
return,

Functions and procedures

PROCselect Assembles the machine code required to call the File selector
and then return the name of any selected file to a known area of
memory that can be accessed from Basic.

Main variables and arrays
A% 22 bytes of memory used 1o hold the assembled machine code.

Advanced User Guide

buffer The start of 13 bytes of memory within A% which are used to
hold any file names.

RS Holds a copy of a sclected file name ready to CHAIN it in.

1% Temporary loop counter used to control the copying of a file
name from memory into the string RS.

P% The pointer to where machine code is to be assembled by the
assembler.

found Start of machine routine where a file name has been found.

loop Label marking the start of the machine code loop to copy a file

name to a known location, uscable from Basic.
The program

10 REM BEC Basic menu system
20 :

30 CLEAR

40 DIM A% 22

70 IF buffer?0 = 0 THEN CLS:PRINT "Press [Function](B] for
menu. " :PRINT: END

80 R§=""

90 FOR J%=0 T0 11

100 IF buffer?J% THEN R$=R$+CHRS (buffer?J%) ELSE J%=12

110 NEXT

120 IF RIGHTS(R$,4) <> ".BAS" THEN GOTO 60

1:0 CHAIN R$

150 DEF PROCselect
160 FOR PASS=0 TO 2 STEP 2
170 P%=A%

210 LD DE,buffer
220 JR C, found
230 LD A,0

280 .loop
290 LD A, (HL)
300 LD (DE),A
310 INC HL
320 INC DE
330 DJNZ loop
340

350 .buffer
360]

370 NEXT
380 ENDPROC

6 The Amstrad Notepad

BIOMON.BAS
Biorhythm Monitor
Biorhythm Moni tor St N B 7
Enter your Date of Birth o s itk
Day (1-31): W L I /;—

BIOMON .BAS, showing physical, intellectual and emotional strength

The study of biorhythms is based on the ancient belief that our physical, intellectual
and emotional states run in fixed, regular cycles from the day that we are born.
‘Whether you believe this or not, it means that we can calculate these states for any
day of a person’s life, given just their date of birth and today’s date. And as the
cycles are regular, they lend themselves to rather attractive looking sine wave charts,
which used to be hand-drawn by astrologists in the days before computers.

However, this is extremely time consuming, and as the formulae for calculating the
number of days that lie between a person’s birthday and any other date are complex,
they make an ideal subject for a computer program to handle. In fact, there probably
isn’t a computer in existence that hasn’t had a biorhythm calculator written for it (as a
demonstration of the machine’s graphics capabilities as much as for any other
reason).

The program BIOMON.BAS uses the standard biorhythm cycles to plot a personal
chart for a 35-day period with today’s date in the middle. It differs slightly from other
programs of this type by telling the user in plain English what each line on the chart
represents, and whether today’s level is good or bad for that particular chart line.

USING THE PROGRAM

Type in the listing and save it as BIOMON.BAS beforc trying it out. This is essential
in case you have made any typing mistakes and something goes wrong.

Now type:

RUN

and press [Return] and you will be prompted to enter your date of birth. Type in the
day of the month on which you were born, and press [Return]. Then type in the

number of the month, press [Return], and then enter the year — you can enter this
either in full, as in 1964, or in shorthand, as in 64. Don’t forget to press [Return] after

Advanced User Guide 7

entering the year. If you make a mistake at any one of these three stages, Biomon will
repeat that stage until it’s happy with the result.

Biomon now makes a final, more involved check to see if the date you have just
entered actually existed. It does this by checking that the month you have entered has
at least the number of days you have given as the day of the month on which you
were born, and leap years are taken into account at this stage. If Biomon finds an
error it will report Bad date — press SPACE, and you will have to re-enter the whole
date.

If all is well with the date, the screen will clear and the plotting will begin. Each line
is drawn with a different dot pattern, making it easier to tell them apart.

When the plot is finished (it takes about half a minute), the box on the chart
representing today’s date will be highlighted in inverse, and the window on the left
will show a key for each of the three chart lines together with a one-word summary
of how good or bad each one is today.

If you can’t wait for the full plot you can cut it short by pressing [Q], which jumps
straight to the summary screen — useful if you’re not interested in seeing the general
pattern of cycles.

HOW IT WORKS

40 Points the Basic error handler to Biomon’s own error handling
routine at line 940.

50 Calls PROCsetup to initialise everything.

60 Calls PROCinput to get a birth date, followed by PROCdays to

count the number of days that have elapsed. Then calls
PROCgraph to plot the chart, and finally PROCreport to
summarise the current state of each chart line.

90-130 Initialise the main graphics constants. Altering these values will
have a major effect on the resulting chart.

140-180 Dimension all arrays and read in all the data.

190 Draws a box enclosing the entire screen area.

200 Draws a vertical line to separate the graph area from the
information window.

210 Prints the program title.

220 Calls the date prompt window into operation and returns from
the procedure.

250 Flushes the keyboard buffer by calling INKEY$(0) until no keys
are returned.

260 Prompis for the date of birth to be entered.

The Amstrad Notepad

270

280

290

300-320
330

340
410

420

430

440450
460

470-520

560
590-600

610

620-630

640

650

660

690

700

Repeatedly prompts for the day of the month until the input is
within legal limits.

Repeatedly prompts for the month until the input is within legal
limits.

Repeatedly prompts for the year until the input is within legal
limits.

Check to see if the date specified exists.

Informs the user if the date doesn’t exist and waits for the
message to be acknowledged.

Repeats the entire input process if the date entered doesn’t exist.
Extracts the current day of the month and the current year from
the system clock.

Extracts the name of the month from the system clock and
converts it into a number between 1 and 12, by comparing it
against each entry in the array m$().

Multiplies the elapscd years by 365 to get the rough number of
days involved.

Adjust the days according to the birth month and current month.
Adjusts the days further according to the day of the month of
birth and the current day of the month.

Adjust the days further according to the number of leap days
involved.

Calculates whether y% is a leap year or not.

Clear the information box and print the current date, together
with the birthdate being plotted, in preparation for the plot.

Sets up a graphics window and origin, and clears the new
graphics window.

Draw the chart axis, and dotted boxes to delimit each of the 35
days to be charted.

Sets the start day to be 17 days ago and starts the main
FOR...NEXT loop for the X coordinate, checking for the [Q] key
at the start of each loop.

If [Q] wasn’t pressed, calls PROCbio() inside a further
FOR...NEXT loop to plot the current Y position of each line.

Ends the main plot loop, inverts today’s box on the chart and
exits the procedure.

Fetches the cycle length for the current line and whether it is in
its dot or dash phase.

Plots a new point for the current line if it is inside its dot phase.

Advanced User Guide 9

710

720
760-830

840-860

870

890

910

920

940

950

960

970

Checks to see if current line’s dot or dash phase has reversed. If
50, flips the line’s dot phase flag.

Stores the new dot phase flag setting for the current line.

Draw a short sample of each line’s dot pattern to be used as a
key, during which time a score for each is calculated in line 810,
representing an entry in the array of comments well$(). Display
the report header when the loop is complete.

Print the name of each cycle, together with a single-word
comment from the list held in well$(), pointed to by the relevant
entry in the score table well%() (which was calculated back in
line 810).

Waits until [Space] is pressed before returning from the
procedure.

Holds the data for the number of days in each month.

Holds the names of each month, as used in line 420 to calculate
the number of the current month.

Holds the cycle length in days for each of the three chart lines,
followed by the length of the dot and dash for that line, followed
by the initial dot-dash phase to start with.

Holds the single-word comments which are used at the end of
each plot to summarise the state of each chart line.

Points the Basic error handler to a full error report in the event
of a further error occurring while attempting to run the menu
program AUTO. This is in case AUTO isn’t present on your
Notepad.

Auempts to run the menu program AUTO if the error was
generated by pressing the [STOP] key.

If the error was caused by something else, or if AUTO isn’t on
your Notepad, a full error report is displayed.

After the error report the Notepad will be left in BBC Basic, so

this message is displayed to remind users of how to return to the
Notepad main menu.

Functions and procedures

PROCsetup

PROCinput
PROCwinl
PROCwin2
PROCdays

Dimensions arrays and reads in all data, initialises main variables
and draws a box.

Prompts for the day, month and year of birth.
Sets up a text window for the birthdate prompt.
Sets up a date window for the birthdate input.
Calculates number of days elapsed since birth.

10 The Amstrad Notepad

PROCgraph Plots a biorhythm chart for the birthdate just entered.

PROCbio Plots a dot at the current X coordinate for any of the three lines.
Called by PROCgraph.

PROCreport Displays a key for the graph and a single-word summary for
each line.

FNleap Returns TRUE or FALSE according to whether the passed

variable is a leap year.

Main variables and arrays

m%() Number of days in each month.

m$() Abbreviation of month names.

period%() Length of each cycle in days.

8ap%() Length of each line’s dot and dash in pixels.

flag%() Keeps count of each line’s current dot or dash phase.

well%() Numbers representing how good or bad each cycle is today.

well$() Store of single-word summaries.

yc% Y centre of graphic window.

xc% X centre of graphic window.

px% Number of pixels per day horizontally.

xm% ‘Width of graphic window.

ym% Height of graphic window.

d% Number of days since birth, as returned by PROCdays.

sd% Number of days since birth up to 15 days ago (the start of the
plot).

d1% Day of birth.

ml1% Month of birth.

y1% Year of birth.

d2% Today’s day of the month.

m2% Today’s month.

m3% Today’s year.

% Number of current line being processed (1, 2 or 3).

quit% ‘Whether Q was pressed during plot.

The program

10 REM Biorhythms
20 :

30 cLs
40 ON ERROR GOTO 940
50 PROCsetup

Advanced User Guide 1

60 REPEAT c :UNTIL FALSE

80 DEF PROCsetup
90 yc¥=31:REM Y Centre of graphic window
100 xc#=155:REM X Centre of graphic window
110 px%=10:REM No. of pixels per day horizontally
120 xm¥=310:REM Width of graphic window
130 ym$=61:REM Height of graphic window
140 DIM m&(12) :FOR d$=1 TO 12:READ ms (d%) :NEXT
150 DIM m$(12) :FOR d%=1 TO 12:READ m§ (d%) :NEXT
160 DIM periods(3),gaps(3,2),£lagh(3),wells(3),well$ (7)
170 FOR t¥=1 TO 3:READ periods (t%),gap$(t%,0),gap%(t$,1), flags(t%) :NEXT
180 FOR wi=1 TO 7:READ well$ (wk) :NEXT
190 MOVE 0,0:DRAW 479, 0:DRAW 479, 63:DRAW 0, 63:DRAW 0,0
200 MOVE 167,0:DRAW 167, 63:PRINT TAB(5,1);CHRS (17);
210 PRINT"Biorhythm Monitor";CHR$ (18)
220 PROCwinl:CLS:ENDPROC
0 :

240 DEF PROCinput
250 REPEAT:UNTIL INKEY$(0)="":REM Flush keyboard buffer
260 PROCwinl:CLS:PRINT TAB(1,0);"Enter your Date of Birth";:PROCwin2:
REPEAT
270 REPEAT:CLS:INPUT" Day (1-31):
280 REPEAT:CLS:INPUT" Month (1-12)
290 REPEAT:CLS:INPUT" Year (1900-)
300 IF y13<100 yl$=yl%+1900
310 leg$=TRUE:IF y1%<1900 OR y1%>2020 leg%=FALSE
320 IF d1%>m$ (ml%)+FNleap(yl$)*(ml#=2) leg%=FALSE
330 IF leg%=0 CLS:PRINT CHR$(17)" Bad date - pr
g8=GET
340 UNTIL leg%:ENDPROC

d1%:UNTIL d1%>0 AND d1%<32
"ml%:UNTIL ml$>0 AND ml%<13
"y1%:UNTIL y1$<100 OR y1$>1900

SPACE";CHR$ (18)

350 :

360 DEF PROCWinl:VDU 28,1, 6,26, 3:ENDPROC
370 :

380 DEF VDU 28,1,5,26,5:

390

400 DEF PROCdays

410 d2%=VAL (MID$ (TIMES,5,2)) : y2%=VAL (MID$ (TIMES, 12, 4)

420 m2%=0:REPEAT:m2%=m2%+1:m$=m$ (m2%) : UNTIL m$=HID$(TINES 8,3)
430 d¥=365* (y2%-y1%)

440 IF m2%>1 FOR m%=1 TO m2%-1:d¥=d¥+m% (m%) : NEXT

450 IF ml$>1 FOR m$=1 TO ml%-1:d%=d%-ms (m%) :NEXT

460 de=d¥+d2%-d1s

470 y¥=yl%-yl% MOD 4:REPEAT:y%=y%+4

480 IF y¥<y2% IF FNleap(y%) db=d%+l

490 UNTIL y$>y2%

500 IF yli=y2% IF FNleap(yl%) AND ml%<3 AND m2%>2 d%=d%+1:ENDPROC
510 IF FNleap(yl%) AND m1%<3 d%=d$+1

520 IF FNleap(y2%) AND m2%>2 db=di+l

530 ENDPROC

550 DEF FNleap (y%)
560 IF y%MOD4=0 AND (y$MOD100<>0 OR y%MOD400=0) THEN =TRUE ELSE =FALSE
0 :

580 DEF PROCgraph

590 PROCwinl:CLS:PRINT TAB(3,0);"Plot on ,ums('tmzs 5,11)

600 PRINT TAB(4,2 B ~cx-ms(11) dis; $;"-"; y1%; CHRS (18)
610 VDU24,168;1;478; 62;29,168;1
620 MOVE 0,yc%:PLOT 21,xm%, ych: uavz xc\—px\/? YC:PLOT 1,px%,0
630 FOR x%=0 TO xm% STEP px%:MOVE x%,0:PLOT 21,x%, ym%:NEXT

12 The Amstrad Notepad

640 8d¥=d%-17:quit$=FALSE:FOR x%=0 TO xm:IF INKEY(0)=81
Qquit$=TRUE : x$=xm¥

650 IF NOT quit% FOR t%=1 TO 3:PROCbio (t%) :NEX!

660 NEXT:MOVE xc%-4,0:PLOT 102,xc%+4,ymé: vnuzs ENDPROC

670 :

680 DEF PROCbio(t%)

690 periods=periods (t%):flagh=flagh(ts):gapt=gaph(ts, flags)

700 IF flagh PLOT 6€9,x%,ych+(ych*SIN (2*PI/periodt* (sd¥+x¥/pxt)))

710 IF x% MOD gap$=0 flagh=flagh+l:IF flagh=2 flag¥=0

720 £lagh (t%)=flags:ENDPROC

730 :

740 DEF PROCreport

750 PROCwinl:CLS

760 FOR t¥=1 TO 3:period$=periods (t%):flagh=0

770 FOR x%=8 Tu 28:gap$=gapt (tt flags)

780 IF flagh PLOT 69,x%,36-t*

790 IF x% MOD gap%=0 tllq\-tllq\+1 IF flag¥=2 flagh=0

800 NEXT

810 v.n\ (£%) = (ycb+ (yoU*SIN (2%PI/period* (sd%+ (xch+px$) /px$)))) /
(ym%/6)+2

820 IF well®(t%)>7 well%(ts)=7

830 NEXT:PRINT TAB(O,0);CHR (19); "You.

840 PRINT TAB(S,1)

r Constitution Today Is
hysically";SPC(5);well$ (well%(1));

850 PRINT TAB(5,2);"Emotionally";SPC(4);well$ (vells(2));
860 PRINT TAB(5,3);"Intellectually ";well$(well$(3));

870 REPEAT:UNTIL INKEY (0)=32:ENDPROC

880 :

890 DATA 31,28,31,30,31,30,31,31,30,31,30
900 DATA Jan,Feb,Mar, Apr, May, Jun, Jul, Aug, Sup Oct, Nov, De
910 DATA 23,8,8,0,28,1,8,0,33,4,4,0

920 DATA Awful,Poor,Fair,Normal,Good,Great, Superb

HR$ (20)

940 ON ERROR GOTO 960

'LS:IF ERR=17 THEN CHAIN "AUTO"

RINT" at line ";ERL

970 PRINT:PRINT"Press [Function][X] for Notepad Main Menu"

CALC.BAS

Scientific Calculator

6337
A
%;N(SZ)

Scientific Calculator

BN

CALC.BAS, a powerful scientific calculator

Most computer users complain at some time or another about the lack of a real
calculator program for their system, which on the whole is a justifiable complaint —

Advanced User Guide 13

especially in the PC compatible world, where hardware costing thousands of pounds
often comes with no software installed.

By contrast, Amstrad Notepad users are lucky enough to have a built-in calculator
featuring a large, friendly display. But sometimes it just isn’t up to the job, especially
where you need to use scientific functions, or recall the results of previous
calculations.

The program CALC.BAS aims to solve some of these frustrations by providing a
large scratch pad on to which you can jot calculations of a highly complex nature.
You are allowed to use all the functions normally available from BBC Basic inside
your calculations, and you enter these in a large window on the left of the screen,
while a matching window on the right displays the results of each calculation.

The windows scroll in both directions and are synchronised, allowing you to recall
previous entries and their results. You can even modify earlier calculations without
having to type in the whole lot again.

Calc remembers the result of the current calculation and displays it in a separate,
stationary window so that you can scroll freely through several screens of work and
not lose your position. It clears this value when you next enter a line.

A special feature of CALC is its ability to treat the value in this window as a running
total accumulator. So, putting a +, —, * or / symbol at the start of your calculation
turns it into an expression that takes the value in the Total window as its input. (See
USING THE PROGRAM for a more detailed explanation of how this works).

Although it doesn’t support the use of variables or memories, you will be surprised at
how useful this program is (it even gives the result of each calculation in
hexadecimal, for any programmers who wouldn’t otherwise have found Calc suited to
their particular needs).

USING THE PROGRAM

Type in the listing and save it as CALC.BAS before trying it out. Type:

RUN

and the cursor will now be sitting in the bottom left of the Input window, between the
two arrows that indicate where your input will go. Now type in any number, or legal
BBC Basic expression such as:

30+ (SIN(45))

Notice that your input is shown in bold text as you type. In fact, the contents of the
bottom line of the Input window is always shown in bold, because when you are

14 The Amstrad Notepad

scrolling through previous calculations it serves to highlight the one currently under
the cursor.

Press [Return] and Calc will scroll both the Input and Result windows up one line,
and the line in the Result window opposite the expression you have just entered
shows the result in both hexadecimal (on the left) and decimal (on the right). The
Total window just gives the result in decimal.

To try out the scrolling facility enter a few simple expressions, until the first one has
completely scrolled off the top of the display. Now press [Up] a few times, watching
as your previous entries (and their results) scroll back into view. Note the expressions
turning bold one by one as they pass through the bottom line of the Input window.

Now stop at any time and edit an expression (one of the features of Calc is that it is
permanently in edit mode, so you can change whatever is under the cursor at any
time). Remember that you MUST press [Return] to register the change — if you move
off the line with [Up] or [Down], Calc will restore the old contents of the line.

You might think that Calc is limited by the seeming inability to pass on any results to
the next calculation you enter. For example, if you were to enter:

10

then both the Result and Total windows would show the answer 10. But what if you
wanted to add 10 to the result from the last calculation? Even the most basic pocket
calculators allow you to do this by default. If you enter a sum like 4 + 30 + 15 on
any calculator, it displays the intcrim total cach time another operator key is pressed.

Calc allows you to emulate this quite well, simply by adding one of the four basic
arithmetic operators to the start of an expression. For example, if you were to enter
this line instead:

+10

Calc assumes that you meant add 10 to the current running total — which is exactly
what is wanted. The same goes for more complex expressions such as:

*(COS (100) +PI) /9.073

which means multiply the current total by the result of this expression. In Basic the
process might look something like this:

total=total* ((COS(100)+PI)/9.073)
Notice the added brackets around everything after the *. This is because syntactically,

Calc evaluates the whole expression (minus the operator, of course) BEFORE
applying it to the total.

Advanced User Guide 15

The next time you enter an expression without a preceding operator Calc clears the
running total. If you would prefer to clear it to zero, just enter 0. Or to clear the entire
scratch pad, type:

CLEAR

in upper case (because BBC Basic requires upper case for all keywords) before
pressing [Return], and then confirm your decision with the [Y] key.

Full line editing is provided by Calc, and while it may not be quite as good as the
Notepad’s default line editor, it does include all the standard editing key functions
you would expect. Here’s a complete list of the movement and editing keys used in
Calc:

[Right] Cursor right — Moves the cursor one character to the right.

[Left] Cursor left — Moves the cursor one character to the left.

[Up] Previous line — Scrolls the Input and Result windows down, and
places the previous expression on the editing line.

[Down] Next line — Scrolls the Input and Result windows up, and places
the next expression on the editing line.

[Del->] Delete character under cursor — The rest of the line is shunted to
the left, while the cursor remains stationary.

[<-Del] Delete character to left of cursor — The rest of the line is shunted
to the left, and the cursor also moves one position to the left.

[Control](E] Delete to end of line — All characters to the right of the cursor

are deleted, as well as the character under the cursor (ideal for
clearing an old line ready for a new expression).

HOW IT WORKS

30 Calls the setup procedure, and points the Basic error handler to
Calc’s own error handling routine.

40 Endlessly calls PROCinput until [Stop] is pressed.

70 Draws the editing line arrows.

80-100 Draw all three window borders.

110 Prints a column of equal signs between the main windows and
prints the Total window’s title.

120 Prints the program title.

130 Dimensions the arrays, calls PROCclear to print a 0 in the Total

window, and tells Basic to display all numbers to 10 significant
figures (the maximum).

160 Runs through the arrays A$() and B$(), setting all elements to ™"
(empty).

The Amstrad Notepad

170

190-250

280

290-350

360

370

380

390

400
430440

470480

510-520

550-560

590

630-640

670-690

Resets both array pointers, clears the total and displays it in the
Total window.

Set up four text windows. In order of appearance they are the
editing line, the Input window, the Results window and the Total
window.

Sets up the edit window, pulls the current calculation from A$Q)
into e$, gets its length, sets the editing cursor to the left edge of
the window, prints the expression in bold, starts the main input
loop and reads a key press into key%.

Check the key in key%, and carry out the appropriate editing or
movement function.

If the key press was a normal character, inserts it into e$ at the
current position by calling PROCinsert.

‘When [Return] is pressed, checks if CLEAR was typed. If so,
calls PROCwipe - but if e$ is empty, it’s forced to contain 0 for
the sake of appearance.

Puts the new expression into A$() at the current position, calls
PROCcalc to evaluate it and update B$(), and advances the array
pointer ptr% (and max% if ptr% was already at the highest
element used so far).

Checks that max% hasn’t exceeded the limits of the arrays A$()
and B$() — otherwise adjusts max%.

Draws the new Input and Result window contents and returns.
If x% isn’t already at the left-hand side, move it left and redraw
the editing line to show the new cursor position.

If x% isn’t already at the end of the line, move it right and
redraw the editing line to show the new cursor position.

If the pointer isn’t already at the start of the array, move it to the
previous expression, display the new window contents and fetch
the new expression for editing.

If the pointer isn’t already at the last entry in the array, move it
to the next expression, display the new window contents and
fetch the new expression for editing.

Calls PROCIist to update the main windows, pulls the current
calculation from A$() into e$, gets its length, sets the editing
cursor to the left edge of the window, sets up the edit window
and prints the expression in bold.

Insert the character key% into €8, if it isn’t already at maximum
length.

Remove character to left of current character from e$, unless at
start of e$.

Advanced User Guide 17

730-740
770-790
820-830

910-920

950-960

990

1010

1020

1030

1040

1080-1090

1130-1160

1190-1210

1220

1270

1280

1290-1300

Remove current character from e$, unless at end of e$.
Truncate e$ at the current position, unless at end of e$.

Print e$ in bold, followed by the current character in inverse to
act as the cursor.

Clear Input window and fill it from A$(), starting from either
five lines before the current line, or the start of the array if less
than five entries exist.

Clear Result window and fill it from BS$(), starting from either
six lines before the current line, or the start of the array if less
than six entries exist.

Fetches the current expression from A$() into e$, and exits if it’s
a null string.

Splits the first character of e$ and puts its ASCII code into 0%,
to check for an operator on the next line.

If 0% is one of the four main maths symbols, sets the flag
carry% to TRUE.

If carry% is TRUE, passes lhe operator and the rest of e$ to
FNcarry() to do an ion on the -
otherwise, just evaluates e$ as non'nal Either way, puts the result
in the accumulator "tot".

Makes separate strings holding the decimal and hex versions of
the new total.

Joins both strings together, padding so that the hex number is on
the left and the decimal is on the right, puts the resulting string
into B$() at the current position, then displays the new total.
Convert ot into a string, padded out to fill the Total window
exactly, and print it bold in that window.

Perform addition, subtraction, multiplication or division with the
accumulator tot and the result of the expression in e$.

In answer to the uscr typing CLEAR, display a safety message
on the editing line in bold. If the user presses [Y] in response,
clear the entire calculator with PROCclear.

Calls PROCnewline to redraw the main windows and put the
current calculation back in the editing line.

Resets Basic’s numeric accuracy to normal and attempts to run
the menu program AUTO if the error was generated by pressing
the [Stop] key.

If the error was No such file, AUTO isn’t on your Notepad so
jump to the full error report.

If the program gets to here an illegal calculation was made. The
user is informed and asked to acknowledge by pressing [Space].

The Amstrad Notepad

1310
1320

PROCnewline is called to redraw the main windows and
redisplay the current calculation on the editing line, and a direct
jump is made back to main loop at line 40. Important: This can
only be allowed to happen a certain number of times before the
Basic stack overflows with PROC calls that the error handler has
jumped out of before reaching the ENDPROC.

Displays a full error report.

After the error report the Notepad will be left in BBC Basic, so
this message is displayed to remind users of how to return to the
Notepad main menu.

Functions and procedures

PROCsetup
PROCclear
PROCinput

PROCleft
PROCright
PROCup

PROCdown
PROCnewline

PROCinsert
PROCdell
PROCdel2
PROCdel3
PROChilite

PROClist
PROClistlt

PROClistrt
PROCcalc

PROCshowacc

Draws the screen and sets up arrays and main variables.

Clears the Input and Result windows, resets the Total window.
‘Takes input from the keyboard, and calls relevant routines for
inserting and deleting characters, or moving around.

Moves the cursor one character to the left.

Moves the cursor one character to the right.

Scrolls both windows down, and places the previous expression
on the editing line.

Scrolls both windows up, and places the next expression on the
editing line.

Redraws both windows at the current position and fetches the
current expression for editing.

Inserts a character into the input line.

Performs [<- DEL].

Performs [DEL ->].

Performs (Control](E].

Prints the current expression in bold, and inverses the current
character to act as a screen cursor.

Main routine to update both Input and Result windows by calling
PROClistlt and PROClistrt.

Redraws the left-hand (Input) window.

Redraws the right-hand (Result) window.

Evaluates the expression just entered, and decides whether to
make this the new total, or take the current total as the
expression’s input, on the basis of the first character. If the first
ch':lracler is + — * or /, FNcarry() is called to evaluate the new
total.

Displays the current running total in the Total window.

Advanced User Guide 19

PROCwipe Displays a safety prompt before calling PROCclear to clear the

entire "scratch pad”,

FNcarry() Takes the current total and either adds to it, subtracts from it,

multiplies it by or divides it by the result of the expression just
entered.

Main variables and arrays

ASQ The input array, which holds all the calculations.

BS$(Q The results array, as displayed in the Results window.

max% Pointer to the highest element of A$() and BS$() currently used.
pr% Pointer to the current element of A$() being edited, and also the

current element of B$() into which the result will be placed.

tot The running total accumulator.

key% The current key press being examined.

e$ The expression currently being edited.

1% The current length of the expression being edited.

x% The current cursor position on the editing line.

0% ‘The mathematical operator at the start of the expression, if any.
$ Result of current expression in decimal

h$ Result of current expression in hexadecimal.

The program

:.o REM Scientific Caloulator

Jn PROCsetup:ON ERROR GOTO 1270
40 REPEAT:PROCinput :UNTIL FALSE

50 :

60 DEF PROCsetup

70 VDU 26:CLS:PRINT TAB(O, 6) ; CHR$ (27) ; CHR$ (16) ; TAB (26, 6) ; CHR$ (27) ;

CHR$ (17) ;
8

100 MOVE 364, 6:DRAW 452, 6:DRAW 452, 11
110 FOR y%=1 TO 6:PRINT TAB(28,y%)

0 MOVE 0, 6:DRAW 162, 6:DRAW 162, 57:DRAW 0,57:DRAW 0, 6
90 MOVE 180, 6:DRAW 340, 6:DRAW 340,57:DRAW 180,57:DRAW 180, 6
RAW 364,18:DRAW 364, 6
NEXT:PRINT TAB(66,4); "TOTAL";

120 PRINT TAB(S8,1);CHR§(17);"Scientific Calculator";CHR$ (18)
130 DIM A$(100),B$ (100) :PROCclear: @%=6A0C: ENDPROC

150 DEF PROCclear
160 FOR p%=0 TO 100:A$§ (p%)="":B§ (p%)="":NEXT
170 :pt

190 DEF VDU 28,1,6,25,

0 :
210 DEF PROCwinlist:VDU 28,1,5,25,1:ENDPROC
0 :

230 DEF PROCwintot:VDU 28,31, 6,55, 1:ENDPROC
0 3

20

The Amstrad Notepad

DEF PROCwinacc:VDU 28, 61, 6, 74, 6:ENDPROC

DEF PROCinput

PROCwinin:e$=A§ (ptrs) :x$=1:1%=LEN (e$) :PROChilite:REPEAT: key$=GET
IF key%=242 PROCleft

key%=243 PROCright

IF key%=240 PROCup

IF key$=241 PROCdown

IF key$=127 PROCdell

4=33 PROCdel2

IF key%=5 PROCdel3

IF key$<>33 AND key3<>5 AND key®>31 AND key$<127 PROCinsert
UNTIL key®¥=13:IF e$="CLEAR" PROCwipe:ENDPROC ELSEIF e§="" e$="0"
25 (p! PROCcalc:ptri=p 2 1

IF max%>100 max$=max$-1:ptri=ptri-1

PROC1ist :ENDPROC

DEF PROCleft
IF x%=1 ENDPROC
x%=x%-1:PROChilite:ENDPROC

DEF PROCright
IF x¥=1%+1 ENDPROC
X%=x%+1:PROChilite:ENDPROC

DEF PROCup
IP ptr¥=0 ENDPROC
CLS:ptr¥=p! 1

DEF PROCdovn

IF ptri=max% ENDPROC
0 cLS

DEF PROCnewline
PROCList:e$=A$ (ptr') :x¥=1:1%=LEN (e§) : PROCWinin:PROChilite: ENDPROC

DEF PROCins
IF 1%=24 nmnoc

@$=LEFTS (e§, x$- 1)¢cns(ny\)+mcnxsun 18+1-x%)
1%=1%+1:x¥=x%+1:PROChilit:

DB! PROCdell

IF x%=1 ENDPROC

©S=LEFTS (e§, x%-2) +RIGHTS (e§, 1¥+1-x%)
X¥=x3-1:14=1%-1:PROChi1ite: ENDPROC

DEF PROCde12

IF x%=1%+1 ENDPROC

@$=LEFTS (8§, x%-1) +RIGHTS (e$, 1%-x%)
1%=1%-1:PROChilite:ENDPROC

DEF PROCdel3

IF x%=1%+1 ENDPROC
@$=LEFT$ (e§, x%-1)
1%=x%-1:PROChilite:ENDPROC

DEF PROChilite

c§=MID§ (e§,x8,1) : IF c§="" c§="
0 CLS:PRINT

CHRS$ (17) ; @$; TAB (x%-1, 0) ; CHR$ (14) ; c§ ; CHRS (15) ; CHRS (18) ;
ENDPROC

Advanced User Guide

21

860 DEF PROClist
870 PROwinlist:CLS:IF ptr¥<>0 PROClistlt
880 PROC1istrt:ENDPROC

900 DEF PROCListlt
910 IF ptre<s
920 FOR yi=topt 7O 4:BRINT ° nn(n y\) A8 (p%) 7

940 BF.? PROClistrt

950 :CLS:IF ptrf top¥=0:

960 FOR yi=topt 70 5: muu:r ns(u ¥8) as(p\)wp\-pvu NEXT:ENDEROC
0

980 DEF PROCCalc
990 e§=A$§ (ptrt):IF e§=""
1000 o%=ASC(LEFT$ (e$,1))

NDPROC

1010 IF o%=42 OR 0%=43 OR 0%=45 OR o¥=47 carry¥=TRUE ELSE carry$=FALSE

1020 IF carry% tot=FNcarry(o%,RIGHTS (e§,LEN(e$)-1)) ELSE tot=EVAL(e$)
1030 t§=STR$ (tot) :h§="&"+STR§ (tot

)
1040 B$ (ptr%)=h$+STRINGS ((25-LEN (h$)) -LEN (t§) , CHR$ (32)) +t§:PROCshowacc

1050 ENDPROC

1070 DEF PROCshowacc

1080 £§=STR$ (tot) : tot§=STRINGS (14-LEN(t$), cmxa (32))+c3
1090 PRINT CHR$(17);

1100 ENDPROC

1120 DEF FNcarry (o%,e$)

1130 IF o%=42 THEN =tot*EVAL(e$)

1140 IF o%=43 THEN =tot+EVAL(e$)

1150 IF o%=45 THEN =tot-EVAL(e$)

1160 IF o%=47 THEN =tot/EVAL(e§)

1170 :

1180 DEF PROCwipe

1190 PROCwinin:CLS

1200 PRINT TAB(6,0);CHRS (17);"Clear (Y/N)?";CHRS(18);

1210 REPEAT: gt-m;r AND 223:UNTIL g%=89 OR g¥=78:CLS:IF g¥=89 PROCCL

rejected by EVAL.
errors will 11 flow the stack.

1270 IF ERR=17 @%=&90A:VDU 26:CLS:CHAIN"AUTO"
1280 IF ERR=214 GOTO 1310
1290 PROCwinin:CLS:PRINT TAB(2,0);CHR$(17);"Error - press SPACE";
CHRS (18) ;
1300 REPEAT:UNTIL GET=32:CLS:PROCnewline:GOTO 40

:REPORT:PRINT" at line
[Function] [X] for Notepad Main Menu"

22 The Amstrad Notepad

CHART.BAS

Programmer’s ASCII Chart

T
H A EH IR L EN EH IH

CHART.BAS, showing the first 64 Notepad characters

A program that displays the entire character set for a particular computer is always a
welcome addition to any programmer’s library of utilities. CHART.BAS is such a
program for the Amstrad Notepad, listing each of the 256 available characters
together with their ASCII codes in both decimal and hexadecimal. It’s worth
mentioning that you can’t normally display characters with an ASCII code of less
than 32 as these are control characters, used for controlling virtually every aspect of
your Notepad’s screen display, and any attempt to print them with a command such
as:

PRINT CHR$ (12)

will usually have a quite unexpected effect (unless, of course, that was your
intention!) - in this case, the screen would be cleared exactly as if you had typed a
CLS command. It might seem odd, then, that each of the 32 control characters (from
0 to 31) has been given a real, six-by-six pixel shape, just like all the others in the
character set (a quick peek at the User Guide shows this to be true). So how can they
be displayed?

The solution lies in the unprintable control code, 27. To be precise: The author of
BBC Basic thoughtfully included this control code to allow any ASCII character to be
printed as a character, without being interpreted by the VDU drivers as a control
code.

Here is the corrected version of the example above which, using ASCII code 27,
manages to print the actual symbol represented by ASCII code 12:

PRINT CHRS$ (27) ; CHR$ (12)

Remember that whatever character you want to display MUST be the very next thing
printed. If you split the command across two separate lines, you can’t miss off the
semicolon, otherwise the carriage return that would normally happen will be
interpreted as a symbol by ASCII code 27, and printed as such. The next line will no
longer be under the control of code 27, so it will behave like any other control code
itself and (you guessed it) the screen will clear again.

Advanced User Guide 23

So if you want to use any of the characters in the Notepad’s character set, and you
aren’t sure if they will be interpreted literally or as control codes, your best bet is
always to precede them with a CHR$(27);. Alternatively you can use the equivalent
VDU command, like this:

VDU 27,12

and you won’t have to worry about appending a semi-colon in order to prevent an
unwanted carriage return.

USING THE PROGRAM

Chart is one of the simplest of all the programs in this book, but you still need to
know how to use it. So type in the listing and save it as CHART.BAS before trying it
out. Type:

RON

(remembering to press [Return]), and the first 64 characters of the Notepad's
character set will be displayed in eight lines, each containing eight columns of codes
separated by vertical bars.

In any column, the information for a code is shown in the order: Decimal, ASCII
code, the Character itself, hexadecimal ASCII code. To see another 64 codes, press
[Down] and the screen will be redrawn with the next page of characters. Press [Up] to
g0 back to the previous page, and [Stop] to exit the program altogether.

When you see a character you would like to include in your programs, jot down its
decimal (or hexadecimal) code for later on. BBC Basic will happily understand either
format in a CHR$() or VDU statement.

HOW IT WORKS

30 Points the Basic error handler to Chart’s own error handling
routine at line 290.

40 Calls PROCsetup to initialise the program, then sits in an infinite
REPEAT...UNTIL loop calling PROCkeys.

80 Sets the page counter (page%) to zero and calls PROCpage to
show the first screen of 64 characters.

120 Sits in a REPEAT...UNTIL loop reading all key presses into g%,
until one has the ASCII value of either the [Up] or [Down] key.

130 If the ASCII value of the key just pressed (g%) was that of the

[Up] key (240), and page% isn’t already zero, decrements page%
and calls PROCpage to show the new page before exiting the
procedure.

140 If the ASCII value of the key just pressed (g%) was that of the

24

The Amstrad Notepad

180
190
200

210

220

230

240

250270

290

310

320

[Down] key (241), and page% isn’t already zero, decrements
page% and calls PROCpage to show the new page before exiting
the procedure.

Begins a FOR...NEXT loop of the column counter (x%).

Begins a nested FOR...NEXT loop of the row counter (y%).
Calculates the ASCII code of the current character by first
multiplying the page counter (page%) by 64 to obtain the code
of the first character in the current page. Next the correct offset
within the page is obtained by multiplying the column counter
(x%) by 8 and adding the row counter (y%). Finally this offset is
added to the code of the first character in the page to obtain the
current character’s ASCII code.

Converts the current character’s ASCII code into the string dec$,
and pads it out with enough spaces to ensure that it will be
right-justified when printed.

Converts the current character’s ASCII code into hexadecimal
and stores it in the string hex$, and if necessary pads it with a
zero character to ensure that it will be the conventional width for
hex characters, which is two characters for eight bit numbers
(three once the ampersand & is added to the front).

Prints dec$ at the correct column position, which is x%*10 as
each field is 10 characters wide. Adds a trailing space and a
semicolon — to ensure the next data printed follows immediately
after the space.

Prints the character itself, using CHRS$(27) to ensure it is not
interpreted by the VDU drivers as a control code, and adds a
space, foliowed lastly by hexS.

End the nested row and column loops, and return from the
procedure.

Points the Basic error handler to a full error report in the event
of a further error occurring while attempting to run AUTO. This
is in case AUTO isn’t present on your Notepad.

Attempls to run the menu program AUTO if the error was
generated by pressing the [Stop] key.

If the error was caused by something else, or if AUTO isn’t on
your Notepad, a full error report is displayed.

After the error report the Notepad will be left in BBC Basic, so
this message is displayed to remind users of how to return to the
Notepad main menu.

Functions and procedures

PROCsetup

Resets the page number and displays the first page of codes.

Advanced User Guide 25

PROCkeys Reads the keyboard for the [Up] and [Down] keys, changing and
displaying pages if appropriate.

PROCpage Displays the current page of 64 ASCII characters.

Main variables and arrays

page% The current page number, from 0 to 3.

char% The current ASCII character being displayed.

dec$ A string containing the decimal ASCII code of the current
character. It is padded with one or two spaces as necessary to
right-align the number.

hex$ A string containing the hexadecimal ASCII code of the current
character. It is padded with a single zero as necessary to
right-align the number.

8% The ASCII value of the current key press.

x% The current column (0 - 7).

y% The current row (0 — 7).

The program

REM Programmers’ ASCII Chart

ON ERROR GOTO 290
PROCsetup:REPEAT: PROCkeys: UNTIL FALSE

cLs
DEF PROCsetup
page%=0:PROCpage
'ENDPROC

DEF PROCkeys

REPEAT: g¥=INKEY (0) :UNTIL g¥=240 OR g#+241

IF gt=240 AND page$>0 paget=page$-1:PROCpage:ENDPROC
IF g¥=241 AND page%<3 paget=page%+1:PROCpage:ENDPROC
ENDPROC

DEF PROCpage
FOR x%=0 TO 7
FOR y%=0 TO 7
chart=pages* 64+ (x¥*8+y%)
dec$=STR$ (char$) : dec$=STRINGS (3-LEN (dec$) , CHRS (32)) +dec$
"&"+STRINGS (2-LEN (hex$) , CHRS (48)) +hex$
PRINT TAB(x$*10,y$) ;dec§;SEC(1);
PRINT CHRS$ (27) ; CHR$ (chart);CHRS$ (18);SPC (1) ;hex$;CHRS (179) ;

T

ON ERROR GOTO 310

VDU 26:CLS:IF ERR=17 THEN CHAIN "AUTO"

RINT" at line ";ERL

PRINT:PRINT"Press [Function][X] for Notepad Main Menu"

26 The Amstrad Notepad

COOKIE.BAS

Random Proverb Generator

g Ancient Chinese proverb say!
“Golden are the sysbols of knowledge"N
g Press SPACE For Further enlightenment...

COOKIE.BAS, with one of its pearls of wisdom

Playing with words is one of the first thing a Basic programmer learns to do. The
program Eliza, which managed y to imitate the h-side manner of a
friendly psychiatrist is probably the most famous example of this sort of idea.

COOKIE.BAS is based on the same principle of stringing a selection of carefully
chosen words together to create a meaningful sentence — in this case, a plausible
sounding proverb of the type that you might find inside a Chinese fortune cookie.

You can waste many a mirthful hour playing with Cookie, but it’s worth pointing out
that the principles used do (believe it or not) have a serious application from the
programmer’s point of view. Not only are Basic’s powerful string-slicing functions
demonstrated — albeit to a very small degree — but some of the basic rules of
simulating natural language on a computer are presented in an approachable fashion.

Feel free to extend the scope of this program, even if it’s only by expanding the
vocabulary in order to reduce the chances of repetition from proverb to proverb — a
chance that is at present fairly high, despite the provision of 30 different subjects,
objects and adjectives which together make the chance of the same proverb appearing
twice in a row some 27,000 to 1.

USING THE PROGRAM
Type in the listing and save it as COOKIE.BAS before trying it out. Then type:
RUN

and the screen will clear to show a shadowed card in the centre, and the face of an
oriental gentleman being drawn on the left of the card.

‘When the drawing is complete, a proverb will immediately be printed in the centre of
the card in bold type enclosed between quotation marks. Cookie will then invite you
to press [Space] for some further enlightenment, which you may do until you have
had enough insights to last you a lifetime. At this point press [Stop], and you will

Advanced User Guide 27

(probably mercifully) leave the Chinese gentleman and his profound sayings for
another day...

HOW IT WORKS

30 Points the Basic error handler to Cookie’s own error handling
routine at line 980.

40 Calls PROCsetup to create and fill the word arrays, and then sits
in an endless REPEAT...UNTIL loop calling PROCproverb.

70 Resets all windows, clears the screen, reads in the absolute
number of words in each array (the arrays must all contain the
same number of words) and assembles the screen loader.

80 Dimensions the three word arrays to max%-1, as the zeroeth
element of each will be used.

90-110 Read in max% number of words into the three arrays.

120 Calls PROCcard to display the card, picture and static text, and
sets up a text window large enough to hold the largest proverb
possible.

160 Loads previously saved screen file from disk, if it exists.

170 Draws the outline of the card.

180 Draws the card shadow.

190 Begins the picture drawing FOR...NEXT loops. y% is controlled
by the outer loop, within which a single string (s$) is read from
the picture DATA. x% is controlled by the inner loop, within
which each character of s$ is extracted with MIDS$(). If the
character is a 1, PROCdot is called to plot a single point within
the picture at the current coordinates of x% and y% (plus the
correct offsets).

200 Ends the x% and y% loops and prints the first static message.

210 Prints the second static message.

250 Plots a point within the growing picture at the current

coordinates of x% and y%. x% has a constant added to ensure
that the picture is plotted within the card, and y% is subtracted
from a different constant to ensure that the picture is both the
right way up and the correct distance from the card edge.

280 Clears the proverb window and picks a random adjective (adj$),
object (0bj$) and subject (sub$) by generating three random
numbers, each of which is used to index into the relevant word
array.

290 Constructs the finished proverb (p$) by joining adj$ to obj$ with
one static string, and obj$ to sub$ with another. Quotes are
joined to p$ at both ends.

28

The Amstrad Notepad

300

310

330
350-380
400430
450480
500-970
990

1010

1020

1050

1060-1100
1120-1130

1190

1200-1230
1240
1250-1260
1270
1280-1300
1310
1350-1360
1370-1400

1440-1470

Prints the proverb p$ bold and centred within the current
window, by starting printing at half the window width minus half
the length of pS.

Repeatedly fetches key presses until [Space] has been pressed,
before exiting the procedure.

Stores the maximum size of the three arrays.

Store 30 adjectives.

Store 30 objects.

Store 30 subjects.

Store 48 picture lines, each of 48 pixels.

Points the Basic error handler to a full error report in the event
of a further error occurring while attempting to run AUTO. This
is in case AUTO isn’t present on your Notepad.

Attempts to run the menu program AUTO if the error was
generated by pressing the [Stop] key.

If the error was caused by something else, or if AUTO isn’t on
your Notepad, a full error report is displayed.

After the error report the Notepad will be left in BBC Basic, so
this message is displayed to remind users of how to return to the
Notepad main menu.

Start of that the screen which
saves a copy of the screen after everything is drawn the first
time, and loads it in each time thereafter.

Define the five NC100 jump block routines to be used.

Begin the two-pass assembly and set P% (the assembly
destination pointer) to the start of the previously dimensioned
Z%.

Pages the 16K of RAM with the video memory in at address
&C000.

Copy the contents of video RAM down to &8000.
Puts back the video RAM.

Open a file for saving the screen data.

Returns if unable to open the file.

Save &1000 bytes from &8000 to the file.

Closes the file and exit.

Open a file for reading.

If unable to open the file set the contents of flag to zero and
return.

Read the &1000 bytes to location &8000 then close the file.

Advanced User Guide 29

1480-1530

1540-1560

1600-1610

1620-1650
1690-1700

1760
1800
1840
1890-1920

1940-1970

Map the video RAM 16K block into &C000, copy the &1000
bytes from location &8000 up to &F000 and then put back the
screen RAM.

To indicate successful loading, set the contents of flag to 1 then
return,

Save the current status of the bank switcher for block 4
(&C000-&FFFF).

Map the video RAM into main RAM then return.

Restore the state of the bank 4 bank switcher and its copy at
&B003.

The file name COOKIE.SCN,

The flag to indicate successful file loading.

Temporary storage of the state of the bank switcher.

A function to allocate memory for a string and store the string in
that memory.

A function to allocate space for a byte of data and store the data
in that location.

Functions and procedures

PROCsetup

PROCcard
PROCdot

PROCproverb

Dimensions the three word arrays, reads in all the words, calls
PROCcard to draw the card, the Chinese gentleman and the
static text messages, and sets up a text window in which to print
the proverbs.

Prints the outline of the card, draws the picture and prints the
static text messages.

Prints a dot from the picture at the current coordinates — called
by PROCcard.

Constructs and prints a new proverb.

Main variables and arrays

adj$0
0bj$()
sub$()
adjs
obj$
sub$
max%

s$

Holds all the adjectives.

Holds all the subjects.

Holds all the objects.

A randomly selected adjective picked from adj$().

A randomly selected object picked from obj$().

A randomly selected subject picked from sub$.

The maximum number of adjectives, subjects and objects which
are to be read from DATA and manipulated.

The current line of the picture while it is being printed.

30

The Amstrad Notepad

x% The current column of the picture being printed.

y% The current row of the picture being printed.

S The proverb under construction and eventually printed.
The program

10 REM Fortune Cookie
20 :
su ON ERROR GOTO 990

so Dl.r PROCsetup
70

L0

Z% &80:

u nm ldjl (-x\ 1) ebjt(m\ 1) , sub$ (max¥-1)

adj$ (wh) :NEXT

100 lO‘l -i-o 10 nx\ 1 READ obj$ (wh) :NEXT

110 FOR max$-1:READ sub$ (wk) :NEXT
120 Pnocnzd VDU 28,24,3,68,3

130 ENDPROC

140 :

150 DEF PROCcard
160 CALL scrn_from disk:IF ?flag=0 THEN CLS ELSE ENDPROC

200 NEXT:NEXT:PRINT TAB(32, 1),'An=1¢nt Chine
210 PRINT TAB(27,6); "Pre:

FOR x¥=0 TO 47:IF MIDS (s§,x%+1,1)="1"

proverb sa
ACE for further enlightenment..

220 CALL scrn_to_disk: NEROC

230

240 DEF PROCdot
250 PLOT 69,x¥+78, 56-y%:ENDPROC

270 DEF PROCproverb
280 CLS Aajl--ajl(m(nx\ 1)) :ob3$=0b3$ (RND (max¥-

1)) nuh'-lu!:‘ (RND (max!

pA-cm(u)uaju" are the "+ob3j§+" of "+sub§+CHRS (34)
:no PRINT TAB(22-LEN(p$)/2,0);CHRS$ (17);p$;CHRS (18);
310 REPEAT:UNTIL GET=32:ENDPROC

DATA
DATA

Subtle,Bold, Many, Rewarding, Brutal,Few, Bland, Blessed, Blind
Cursed, Sinister, Wondrous, Vague, Deadly, Strange, Black, Golden

t,Bitter,Varied Terrible, Simple,Cheap
Tainted, Futile,Promising, Painful, Empty

£ir

pathvays, penalti

temples,benefits, pleasures, sins,

lations, seeds, vays, perils, qualities,

origine, follies, eanignas, dividends, revards, dn-d. evils,politics
rimes, desi.

the flesh,passion, hate,seduction,the soul,charity,knowledge
the spirit,wisdom, heaven,hell,mercy, freedom, 1ife, the

heart, destiny

Advanced User Guide

31

470
480

490 :

500
510
520
530
540
550
560
570
580
590

610

800

DATA love,death, truth, lust,greed, hope, delight,despair, dis
DATA envy, religion,deceit,guilt

DATA 1

DATA 011

DATA 00001

DATA 0011111

DATA

DATA 100011111111

DATA 1

DATA 000011111111111

DATA

DATA 1111111111211

DATA

DATA 100000011111111111111111

DATA

DATA 000000011111111111111111111

DATA 1

DATA 1111111111111111111111

DATA

DATA "oouooulauonuoouunuuu1111uunuunuoooouu"
DATA "00000: on
DATA maooxuoauooooounuxuuuuuuuuunuuoouo'-
DATA "0001 000"
DATA "001 111111111111111111111111111111100"
DATA

DATA "11"
DATA 1

DATA 000001111 1111000001

DATA 100001 00001

DATA 0000001 0000001

DATA 00000001 00000001

DATA 000000011 00000001

DATA 000000101 010000001

DATA 000000011100000011100000001

DATA

DATA

DATA

DATA 1001

DATA 10000011000011000011000001

DATA 0011001 0011001

DATA 01 1

DATA 00011 110001

DATA 000011111111111100001

DATA "000000000000101000011000000110000101000000000000
DATA 00000011111100000010

DATA 001 Y001

DATA 0001 0001

DATA 000011 100001

DATA 00000011100001110000001

DATA

ON ERROR GOTO 1010

VDU 26:CLS:IF ERR=17 THEN CHAIN "AUTO"

REPORT:PRINT" at line ";ERL

PRINT:PRINT"Press [Function][X] for Notepad Main Menu"
END

DEF PROC:

assemble
fopenout=£B8AS

32 The Amstrad Notepad

1070 fopenin=sB8A2
1080 foutblock=sBSAB
1090 finblock=EB896
1100 fclose=&B8IO

0 :

1120 FOR PASS = 0 TO 2 STEP 2
1130 P%=2%

o[
1150 OPT PASS
0 :
1170 .scrn_to_disk

1190 CALL map_sern_in
1200 LD HL, &F000

1210 LD DE, £8000

1220 LD BC, £1000

1230 LDIR

1240 CALL map_scrn_out
1250 LD HL, filename
1260 CALL fopenout
1270 RET NC

1280 LD HL, £8000

1290 LD BC, £1000

1300 CALL foutblock
1310 JP fclose

1320 :

1330 .scrn_from_disk
1340 :

1350 LD HL, filename
1360 CALL fopenin
1370 JR C, froml

1380 LD HL, flag

1390 LD (HL),0

1400 RET

1410 :

1420 . froml

1430 :

1440 LD HL, 58000

1450 LD BC, £1000

1460 CALL finblock
1470 CALL fclos

1480 CALL map_:
1490 LD HL, £8000
1500 LD DE, 4F000
1510 LD BC, 1000
1520 LDIR

1530 CALL map_scrn_out
1540 LD HL,flag
1550 LD (HL),1

1560 RET

1570 :

1580 .map_scrn_in
1590 :

1600 LD A, (£B003)

1610 LD (state),A
1620 LD A, 67

1630 LD (&B003),A
1640 OUT (s13),A

1650 RET

1660 :

crn_in

Advanced User Guide 33

1670 .map_scrn_out
1680 :
1690 LD A, (state)
1700 LD (&B003),A
1710 OUT (&13),A
T

1740 .filename

0 :
1760 DEFM "COOKIE.SCN":DEFB 0
1770 :
1780 .flag

1800 DEFB 0

te

1840 DEFB 0
1850)

1870 ENDPROC

DEVIL.BAS
Towers of Hanoi

MENU OF OPTIONS S Tiers
nr utn:unun er | M s
e et L
Touers of Honoi b
the First letter of any Optiorll

DEVIL.BAS, getting ready to start a game

Towers of Hanoi is a popular and very old game of the patience variety, where a lone
player must move a stack of rings from one of three vertical poles to another, one at a
time — but the stack is built from rings of different sizes, and at no time during the
game may any ring be placed on top of one that is smaller.

It’s not hard to work out the solution, but the trick lies in completing the puzzle in the
fewest number of moves — which if you have never played the game before is a lot
harder than it sounds. In fact the minimum number of moves doubles with every ring
added to the stack (rather like the binary number system, in fact).

DEVIL.BAS adheres strictly to the standard rules. You can choose to play with any
number of rings from two to seven levels (often called fiers in this version) and if you
get stuck you can ask the computer to play the full solution for that number of tiers. It
will solve the game either at full speed (quite entertaining to watch at seven-tier level)

34 The Amstrad Notepad

or run through it one step at a time, waiting for a key press before continuing (ideal
for studying the solution).

USING THE PROGRAM
Type in the listing and save it as DEVIL.BAS before trying it out. Then type:
RUN

and the main screen will appear. The number of rings or tiers is initially set to five, as
shown in the box to the right, but you can change this from the Main Menu at any
time by pressing [C], followed by the number you would like to play with, and finally
[Return].

To play the game with the current number of tiers, press [S] from the main menu.
The centre area of the display will clear to show a stack of rings on the left, beneath
the number 1. At the top of the screen in the centre is the number 2, and at the
top-right of the are is the number 3. These numbers represent the three poles, which
are not themselves drawn for reasons of clarity.

The game is played by first pressing the number of the pole from which you would
like to move a ring — the start pole, followed by the number of the pole you want to
move it to — the end pole. For example, if you wanted to move a ring from pole 1 to
pole 2, just push [1] followed by [2].

There is no need to press [Return] to enter your choice — the keys are read instantly
as you push them. Devil will not allow illegal moves to take place. An illegal move is
considered to be any one of the following:

Q Attempting to select a start pole that is empty

Q Attempting to select an end pole whose top-most ring is smaller than the ring to be
moved

Q Attempting to select a ring that cannot possibly be moved because the other two
poles top-most rings are both smaller in diameter

Q Attempting to move a ring to the pole it is on.

The game continues until you either complete the puzzle, in which case you will be
heartily congratulated (well, sort of), or you press [Stop], which will immediately exit
the program, or you press [Q], which will prompt the computer to ask you if you are
sure you want to abandon the game. If you are, press [Y] to return to the main menu
— otherwise, press [N] and the game will resume.

During play the box on the right hand side of the screen always shows the number of
the current move and also the highest score for this level. Changing the number of
tiers resets the high score and, of course, starting a new game resets the move

Advanced User Guide 35

counter. All prompts during a game (or an automatic solution) are displayed on the
bottom line of this box which normally shows either From? or To?, depending on
whether you next need to select a start or end pole.

If you can’t solve a particular level you might like to watch the computer doing it for
you in the shortest possible number of moves. To do this press [P] from the main
menu to see the automatic solution menu. You are given the choice of either
automatic playback (where the entire solution whips past at the speed of light), or
manual playback (where the computer politely waits for you to press a key after each
move).

Press [A] for automatic or [M] for manual, and the solution will unfold before your
very eyes. In both automatic and manual modes you can abort the solution by
pressing [Q], exactly as if it were a normal game being played, and you will be
dropped back at the Main Menu.

If you want to review the rules at any time, press [R] from the main menu. When
you've finished reading, press [Space] to return to the menu.

HOW IT WORKS

30 Points the Basic error handler to Devil’s own error handling
routine at line 2510.

40 Resets all windows, clears the screen and calls PROCsetup to
initialise the program.

50 Calls the Main Menu inside an infinite REPEAT...UNTIL loop
until [Stop) is pressed.

90 Di ions the arrays and the screen

100 Sets the default number of tiers to five.

110-120 Create seven 32-ch: width strings ining different size
rings made from CHR$(223), and place them in tier$, smallest
first.

130 Loads previously saved screen file from disk, if it exists.

140-170 Draw screen boxes and print the left-hand box static strings.

180-190 Draw the four Chinese characters held in DATA lines.

200-220 Print the right-hand box static strings.

260-320 Set up the main window and print the Main Menu.

330-340 Read keyboard until one of the highlighted menu option letters is
pressed.

350-380 Call the appropriate procedure depending on the key just
pressed.

420-450 Ask user for the new number of tiers, and wait until a valid

number between 2 to 7 inclusive is entered.

36 The Amstrad Notepad

460 Prints the new number of tiers in the right-hand status box.

470 Resets the move counter and the high score, and prints these in
the status box.

510 Starts the main game REPEAT...UNTIL loop and repeatedly
puts the result of FNmove into result%.

520 If result% equals FALSE then [Q] was pressed at some point
during the move, and so calls FNquit to make sure the user
wants to quit. If FNquit returns TRUE then forces an exit from
the REPEAT...UNTIL loop and returns from the procedure.

530 [Q] wasn’t pressed, so repeats the loop until won% equals
TRUE. Then checks to see if the high score (hi%) is now higher
than the number of moves just made (sc%), and if so sets hi% to
sc%.

540 Prints high score and congratulations message.

550 Waits for [Space] key before returning from procedure.

580-600 Check poles 2 and 3 to see if a complete stack has been built by
comparing stack%(pole) with tiers%. If equal, return TRUE. If
not, return FALSE.

630-650 Print a Quit (Y/N) prompt and return TRUE if [Y] is pressed or
FALSE if [N] is pressed.

680 Executes a FOR..NEXT loop to draw the initial stack on pole 1,
to the height of tiers%.

690 Prints the pole numbers.

730-790 Display a the rules and wait for [Space] before returning.

820 Defines a text window for the main playing area.

850 Defines a text window to hold the score, high score and current
number of tiers.

880 Defines a text window for the prompts issued when a game is
under way.

910 Clears the prompt window and prints From?, signalling that a
start pole is to be selected.

920 Calls FNkey inside a REPEAT...UNTIL loop to obtain the start
pole, returning FALSE if FNkey returns FALSE ([Q] was
pressed).

930 Repeats the loop unless FNlegal_start returns TRUE, in which
case the start pole number is printed next to the From? message,
and the word To? is added on the end to signal that an end pole
is to be selected.

940 Calls FNkey inside a REPEAT...UNTIL loop to obtain the end

Advanced User Guide 37

950
960

970
1000-1010

1020

1030

1060

1070-1090

1100

1130

1140

1150

1180

1190

1220

1230

1270
1280
1320

1350
1380

pole, returning FALSE if FNkey returns FALSE ([Q] was
pressed).

Repeats the loop unless FNlegal_end returns TRUE.

Prints the end pole number next to the To? message, removes the
start ring with PROCget(start%), and puts it on the new pole
with PROCput(end%).

Increments and prints the move counter, and returns TRUE.
Repeatedly scan the keyboard until any of [1], [2], [3] or [Q] is
pressed (g% AND 223 forces the key into upper case to save
two separate checks on its ASCII code).

If [Q) was pressed, returns FALSE.

Returns the ASCII value of the key minus 48, to bring it into the
range 1 to 3.

Returns FALSE if start pole is empty.

Set legal% to FALSE and check the other two poles to see if the
start ring can legally be moved to either. If so, set legal% to
TRUE.

Returns the value of legal%.

Returns FALSE if the end pole selected was in fact the start
pole.

Returns FALSE if the start ring is larger than the top-most ring
on the end pole.

Rewrns TRUE, because no problem was found with the choice
of end pole.

Returns 99 if the pole passed in p% is empty.

Otherwise returns the number of the top-most ring on pole p%,
as held in pole%(p%;height), where height is given by
level%(p%).

Removes a ring from the pole passed in p% by overprinting it
with 32 spaces.

Calls FNtop with p% to get the number of the top-most ring, and
stores it in store% before decrementing the height of the pole
held in level%(p%).

Increments the height of the pole held in level%(p%) and places
the ring number held in store% on the top of the pole.

Places the new ring (still held in store%) on the pole passed in
p% by fetching its image from tier$().

Prints the current move counter.

Prints the current high score.

Sets up the left-hand pole to hold the number of each ring up to

38

The Amstrad Notepad

1390

1400
1430

1440
1450
1460
1470-1480
1510-1540
1550
1560
1570
1580

1590

1610

1620

tiers%. The largest must be at the bottom — pole%(1,tiers%) —
and the smallest at the top — pole%(1,1) — and so the rings are
placed in reverse order. Sets the height of the first stack as held
in level%(1) to tiers%.

Clears the ring numbers on the other two poles to zero and sets
their heights to zero.

Draws the new stack and resets the move counter.

Sets x% and y% to point to the top left graphics location of the
Chinese character about to be printed, by multiplying the passed
text coordinates. Also ensures the character is not inverted by
subtracting the resulting Y coordinate from the top-most point on
the screen.

Starts the outer row loop, reading in each line of the character
from DATA.

Starts the inner column ioop, extracting each character from the
line just read.

Plots a point at the current X and Y graphics coordinates if the
character just extracted is a 1.

End the inner and outer loop before returning.

Display the automatic solution menu and prompt for a key press.
Reads the keyboard until [A], [M] or [Q] is pressed.

Returns if [Q] was pressed, otherwise sets ss% (single-step
mode) to TRUE if [M] was pressed or FALSE if [A] was
pressed.

Sets up and draws the starting position, clears the status window
and turns on bold type.

Displays the selected playback mode according to the value of
55%.

Turns bold off, activates the main window, resets the DATA
pointer to the start of the solution, clears quit% and begins the
playback REPEAT...UNTIL loop.

Calls PROCwait if in single-step mode to wait for a key press
before continuing, otherwise the keyboard is checked on the fly
with INKEY$(0), to see if [Q] has been pressed. If so, sets quit%
to TRUE.

Reads each move of the solution into start% and end%, which
allows simulation of a normal game by calling PROCgel(start%)
and PROCput(end%) immediately.

Increments and prints the move counter and loops back to the
REPEAT, until either quit% equals TRUE or the solution has
been completed.

Advanced User Guide 39

1630

1640-1650

1680

1720-2380

2400-2500

2520

2530

2540

2550

2580

2590-2630
2650-2660

2720

2730-2760
2770
2780-2790
2800
2810-2830
2840
2880-2890
2900-2930

2970-3000

Activates the status window and returns from the procedure if
quit% equals TRUE.

Print a Press SPACE prompt and wait until [Space] is pressed
before returning from the procedure.

Waits for [Space] or [Q] to be pressed, setting quit% to TRUE if
[Q] was pressed, or FALSE if not.

Hold the data for four Chinese characters which spell (roughly
translated) Devil Abacus.

Hold the complete solution for up to seven rings, as pairs of start
and end pole movements.

Points the Basic error handler to a full error report in the event
of a further error occurring while attempting to run AUTO. This
is in case AUTO isn’t present on your Notepad.

Attempts to run the menu program AUTO if the error was
generated by pressing the [Stop] key.

If the error was caused by something else, or if AUTO isn’t on
your Notepad, a full error report is displayed.

After the error report the Notepad will be left in BBC Basic, so
this message is displayed to remind users of how to return to the
Notepad main menu.

Start of that les the screen which
saves a copy of the screen after everything is drawn the first
time, and loads it in each time thereafter.

Define the five NC100 jumpblock routines to be used.

Begin the two-pass assembly and set P% (the assembly
destination pointer) to the start of the previously dimensioned
Z%.

Pages the 16K of RAM with the video memory in at address
&C000.

Copy the contents of video RAM down to &8000.
Puts back the video RAM.

Open a file for saving the screen data.

Returns if unable to open the file.

Save &1000 bytes from &8000 to the file.

Closes the file and exit.

Open a file for reading.

If unable to open the file, set the contents of flag to zero and
return.

Read the &1000 bytes to location &8000 then close the file.

40

The Amstrad Notepad

3010-3060

3070-3090

3130-3140

3150-3180
3220-3230

3290
3330
3370
3420-3450

3470-3500

Map the video RAM 16K block into &C000, copy the &1000
bytes from location &8000 up to &F000 and then put back the
screen RAM.

To indicate successful loading, set the contents of flag to 1 then
return.

Save the current status of the bank switcher for block 4
(&C000-&FFFF).

Map the video RAM into main RAM then return.

Restore the state of the bank 4 bank switcher and its copy at
&B003.

The file name DEVIL.SCN.

The flag to indicate successful file loading.

Temporary storage of the state of the bank switcher.

A function to allocate memory for a string and store the string in
that memory.

A function to allocate space for a byte of data and store the data
in that location.

Functions and procedures

PROCsetup

PROCmenu

PROCtiers
PROCplay
PROCdrawstack

PROCrules
PROCwinl
PROCwin2

PROCwin3
PROCget()

PROCput()
PROCscore

Sets up the main variables and draws the playing screen. Calls
PROCchinese four times to display the Chinese characters. Fills
tier$ with seven rings of decreasing diameter built from
CHR$(223).

Displays the Main Menu and calls the appropriate procedure
according to the key pressed.

Allows user to change the current number of tiers.

Plays the game.

Draws the playing area ready for start of play or auto-solve, with
a stack of rings (of the currently selected number) on the left,
and the pole numbers on the top line.

Displays the rules.
Defines a text window for the main playing area.

Defines a text window for the status box (where the scores and
current number of tiers are displayed).

Defines a text window for the prompt box (where prompts are
displayed during a game).

‘Takes a ring of the named stack and stores its number.

Places the stored ring on the named stack.

Updates the current move counter.

Advanced User Guide 41

PROChiscore
PROCprepare

PROCchinese()
PROCsolve

PROCwait

FNwin
FNquit

FNmove
FNkey
FNilegal_start

FNIlegal_end
FNtop()

Updates the fewest moves counter.

Prepares program for a new game or automatic solution by
resetting the ring stacks and the moves counter.

Prints a Chinese character at the passed text coordinates.

Plays the complete solution for the current number of tiers, in
automatic or single-step mode.

Waits for [Space] or [Q] to be pressed, setting quit% to TRUE if
[Q] was pressed, or FALSE if not.

Sets won% to TRUE if any stack contains all the rings.

Prints a Quit (Y/N) prompt and returns TRUE if [Y] is pressed or
FALSE if [N] is pressed.

Plays a full move, returning FALSE if [Q] was pressed instead
of a start or end pole number.

Waits for (1], [2], (3], or [Q] to be pressed, returning FALSE if
the latter, or TRUE if any of the former.

Returns FALSE if the selected start pole is illegal for any reason.
Returns FALSE if the selected end pole is illegal for any reason.
Returns the number of the ring at the top of the named stack (1
to 7), or 99 if the stack is empty.

Main variables and arrays

tierSQ)

pole%()
level%()
start%
end%
sc%
hi%

ss%

quit%

8%

The program

Holds strings representing pictures of all seven rings. tier$(1) is
the smallest, tier$(7) the largest.

Holds the current position of rings on each pole.

Holds the current number of rings held on each pole (1 to 7)
The start pole number (1 to 3).

The end pole number (1 to 3).

The move counter.

The fewest moves managed so far for the current level.
Single-step flag, holds TRUE if user selected manual playback
of the solution, otherwise holds FALSE.

Holds TRUE if [Q] was pressed during a game or automatic
solution.

Used throughout the program to hold key presses.

10 REM Devil’s Abacus

20 :
30 ON ERROR GOTO 2520
40 VDU 26:CLS:PROCsetup

2 The Amstrad Notepad

50 REPEAT:PROCmenu:UNTIL FALSE
END

80 DEF PROCsef
90 DIM ti..l'&('l)rpull\ (3 7),level%(3),2% &80:PROCassemble
100 tie
110 FOR t\-l TO Ap.as-smlct('l—n.ms (32))

120 tier$ (t%)=pad$+STRINGS (t¥*2, CHRS (223)) +pad$:NEXT

130 CALL scrn_from disk:IF ?flag=0 THEN CLS ELSE GOTO 200
140 MOVE 0,0:DRAW 100, 0:DRAW 100, 63:DRAW 0, 63:DRAW 0,0

150 MOVE 380, 0:DRAW 479, 0:DRAW 479, 63:DRAW 380, 63:DRAW 380,0
160 PRINT TAB(1,1);CHRS(17);"Devil’s Abacus”;CHRS (18);

170 PRINT ns(l.s);cnns (17) ; "Towers of Hanoi
180 RESTORE 1720

B e
200 PROCWin2:CLS:PRINT TAB(4,0);CHRS (17); tierst;CHRS (32); "Tiers";
CHRS (18)
210 PRINT TAB(3,2); "Move:
220 PRINT TAB(4,3); "Best
230 CALL scrn_to_disk:ENDPROC
240 :
250 DEF PROCmenu
260 PROCwinl:CLS
270 PRINT TAB(15,0); cm(n), "MENU OF OPTIONS";CHRS (18)
280 PRINT TAB(8,2);:VDU 40,17,83,18,41:PRINT"tart a new game"
290 PRINT TAB(S,3); vnu 40,17, 67,18, 41:PRINT"hange the number of Tiers"
300 PRINT TAB(8,4);:VDU 40,17,80,18, 41:PRINT"lay the computer
solution”
310 PRINT TAB(S,5);:VDU 40,17,82,18,41:PRINT"ead the Rulel of Play"
320 PRINT TAB(4,7);"Press the first letter of any Opti
330 REPEAT:g%=GET AND 223
340 UNTIL g¥=83 OR g¥=67 OR g#=80 OR g¥=82
350 IF g¥=83 PROCplay:ENDPROC
360 IF g¥=67 PROCtiers:ENDPROC
370 IF g4=80 PROCsolve:ENDPROC
380 IF g8=82 PROCrules:ENDPROC
nn ENDPROC
200 :
un DEF PROCtiers
420 CLS:PRINT TAB(13,2);CHRS(17);"SET NUMBER OF TIERS";CHR$(18)
430 PRINT TAB(2,6); "Minumum Moves: 2 Tiers = 3, 7 Tiers = 127
How many Tiers (2-7) “;

500 PROCP:

520 IF result%=FALSE IF FNquit UNTIL TRUE:ENDPROC
530 UNTIL FNwin:IF sc<hi% OR hi%=0 hi%=sct
540 PROChiscore:PROCWin3:CLS:PRINT SBC(3);CHRS (17); "Well
Done! "; CHRS (18) ;
550 REPEAT:UNTIL GET=32:CLS:ENDPROC
560 :
570 DEF FNwin
580 won$=FALSE:FOR p¥=2 TO 3
590 IF levels (p%)=tierst won=TRUE
600 NEXT:=won%
610 :

a

Advanced User Guide

43

DEF FNquit

PROCwin3:CLS:PRINT SPC(2);CHR§(17);"Quit (Y/N)?";CHR$(18);
REPEAT: g=GET AND 223:UNTIL g%=89 OR g¥=78

CLS:IF g%=89 THEN = TRUE ELSE = FALSE

DEF PROCdrawstack:PROCwinl:CLS

-t%); u-ra(pelu(i t%))
;TAB(36,0);

PRINT TAB(6,0);"1"
ENDPROC

TAB(21,0);

DEF PROCrules
CLS:PRINT TAB(20,0);CHR$ (17) ; "RULES"; CHR$ (1
PRINT"The object of Devil's Abacus is to mo
PRINT"entire tower to any empty position, tier by"
BRINT"tier, in as few moves as possible. However,"
PRINT"you can’t put larger tiers on smaller on
PRINT TAB(10,7);"Press SPACE for the Menu";
REPEAT:UNTIL GET=32:ENDPROC

DEF PROCwinl

VDU 28,18, 7, 62, 0:ENDPROC

DEF PROCwin2

VDU 28, 64,5,78,1:ENDPROC

DEF PROCWin3
VDU 28, 64, 6, 78, 6:ENDPROC

DEF FNmove
PROCwin3:CLS:VDU 17:PRINT TAB(1,0);"From ";
REPEAT: start$=FNkey:IF start$=FALSE UNTIL TRUE:VDU 18:=FALSE
UNTIL FNlegal start:VDU start%+48:PRINT TAB(10,0);"To: ";
Yy

F -nd\-rmz UNTIL TRUE:VDU 18:=FALSE

Rocwinl: Pnocqcc (start%) :PROCput (end%)

970 sc¥=sck+1:PROCEcore: ="
980 :

990 DEF FNkey

1000 REPEAT:g#=GET

1010 UNTIL (g%>=49 AND g¥<=51) OR (g% AND 223)=81
1020 IF (g% AND 223)=81 THEN = FALSE

1030 =g%-48

1040 :

1050 DEF FNlegal start

1060 IF muu(- :u)-n man -ru..sz

1070 legal$=F R ph=1 T

1080 IF p\<>-nxu ¥ map(-:.zcu)<wncop(p|) legal%$=TRUE
1090 NEXT

1100 =legals

1110

1120 DEF FNlegal_end

1130 IF start¥=end$ THEN =FALSE

1140 IF thp(ltln\))l’ncop (end$) THEN =FALSE
1150 =TRI

1160 :

1170 DEF FiNtop(p%)

1180 IF level$ (p¥)=0 THEN = 99

1190 =poles (p%,levelt (pt))

1200 :

1210 DEF PROCget (p%)

44

The Amstrad Notepad

PRINT TAB(15%p%-15,8-levelt (p%));STRINGS (14,CHRS (32));
store¥=FNtop (p%) : levels (p%) =levels (p%) -1
ENDPROC

DEF PROCput (i

levels (p%) -lmn (P) +1:polet (py, Levels (p4)) =stor
PRINT TAB(15%p%-15, 8-levels (pt));tiers (stor
ENDPROC

DEF PROCsC
PROCwin2: Pxnlr TAB (10, 2) ; 8C%; SPC (2) :ENDPROC

DEF PROChiscore
PROCwin2:PRINT TAB(10,3);hi%;SPC(2) :ENDPROC

DEF PROCprepare
FOR t¥=1 TO tiers¥:poles (1,t%)=tierst+1-t¥:NEX
FOR p¥=2 TO 3:FOR t¥=1 TO 7:poles (ph, t¥)=0:NEXT:
PROCArawstack: sc¥=0:ENDPROC

evelt (1)=tierst
evelt (p¥) =0:NEXT

DEF PROCchin
X$=CO14%6: yhm6
FOR r%=1 TO 16:READ r§

FOR ch=1 TO 16:p¥=VAL (MID§ (r§,c%,1))
IF p¥=1 PLOT 69,x%+(c$-1),y%- (r$-1)
NEXT:NEXT

ENDPROC

(col%, rows)

DEF PROCsolve

CLS:PRINT TAB(10,2);CHR$(17); "PLAY COMPUTER'S SOLUTIO!
PRINT TAB(S,4);:VDU 40,17, ss 1
VDU 32,40,17,77,18, 41:PRINT"anual playback?";

1540 PRINT TAB(O, 6);"Q Quits pnyxuck - SPACE moves in Manual Mode";
1550 REPEAT:g%=GET AND 223:UNTIL g¥=65 OR g#=77 OR g%=81

1560 IF g¥=81 ENDPROC ELSE IF g¥=77 ss¥=TRUE ELSE ss¥=FALSE
1570 PROCprepare:PROCWiN3:CLS:VDU

1580 IF ss% PRINT SEC(2); ELSE PRINT SPC(1); "Auto
Playback";

1590 VDU 18:PROCwinl:RESTORE 2400:TIME=0:quit$=FALSE:REPEA

1600 IF ss% PROCwait ELSE i%=INKEY(0) AND 223:IF i%=81 qult\-:mvz
1610 READ startd,end$:PROCget (starts) :PROCput (end%)

1620 sc¥=sch+1:PROCscore:PROCwinl:UNTIL sct=2°tiers%-1 OR quit$
1630 PROCwin3:CLS:IF quit% ENDPROC

1640 PRINT SPC(2);CHRS (17);"Press SPACE";CHRS (18);

1650 REPEAT:UNTIL GET=32:CLS:ENDPROC

1660 :

1670 DEF PROCwait

1680 REPEAT:i%=INKEY(0):quit®=(i%=81):UNTIL 1%=32 OR quit$

1690 ENDPROC

1700 :

1710 REM Chi. Character "Devil" #1

1720 DATA "0000000110000000"

1730 DATA "0000000100000000"

1740 DATA "0111111111111110"

1750 DATA "0110000110000110"

1760 DATA "0110000110000110"

1770 DATA "0111111111111110"

1780 DATA "0110000110000110"

1790 DATA "0110000110000110"

1800 DATA "0111111111111110"

Advanced User Guide

1810 DATA "0110000110001100"
1820 DATA "0000000110011000"
1830 DATA "0000000110100000"
1840 DATA "0000001011111110"
1850 DATA "0000110011000000"
1860 DATA "0111000011111111"
1870 DATA "0000000000000000"
1880 REM Chinese Character "Devil" #2
1890 DATA "0000000000000000"
1900 DATA "0000000000000100"
1910 DATA "0011111111111110"
1920 DATA "0000000000111000"
1930 DATA "0000000001100000"
1940 DATA "0000000011000000"
1950 DATA "0000000110000000"
1960 DATA "0000000110000010"
1970 DATA "1111111111111111"
1980 DATA "0000000110000000"
1990 DATA "0000000110000000"
2000 DATA "0000000110000000"
2010 DATA "0000000110000000"
2020 DATA "0000000110000000"
2030 DATA "0000111100000000"
2040 DATA "0000001000000000"
2050 REM Chinese Character "Abacus" #1
2060 DATA "0001100001100010"
2070 DATA "0111111111111111"
2080 DATA "1100000110011000"
2090 DATA "0001111111111000"
2100 DATA "0001100000011000"
2110 DATA "0001111111111000"
2120 DATA "0001100000011000"
2130 DATA "0001111111111000"
2140 DATA "0001100000011000"
2150 DATA "0001111111111000"
2160 DATA "0000110000110010"
2170 DATA "0111111111111111"
2180 DATA "0000110000110000"
2190 DATA "0001100000110000"
2200 DATA "1110000000100000"
2210 DATA "0000000000000000"
2220 REM Chinese Character "Abacus" #2

2260 DATA "0001111111111000"
2270 DATA "0001101100011000"
2280 DATA "0001100110011000"

2290 DATA "0001100001011010"
2300 DATA "0111111111111111"
2310 DATA "0001101100011000"

A

2350 DATA "0001100110011000"

2360 DATA "0001100110011010"

2370 DATA "0111111111111111"

2380 DATA "0000000000000000"

2390 REM Solution for all Tiers up to Seves
2400m1!12132!12313212]32!213123

46

The Amstrad Notepad

DATA 1,2,1,3,2,3,1,2,3,1,3,2,1,2,3,1,2,3,2,1,3,1,3,2

DATA 1,2,1,3,2,3,1,2,3,1,3,2,1,2,1,3,2,3,2,1,3,1,2,3

DATA 1,2,1,3,2,3,2,1,3,1,3,2,1,2,3,1,2,3,2,1,3,1,2,3
1,2,1,3,2,3,1,2,3,1,3,2,1,2,1,3,2,3,2,1,3,1,2,3
1,2,1,3,2,3,1,2,3,1,3,2,1,2,3,1,2,3,2,1,3,1,3,2
1,2,1,3,2,3,1,2,3,1,3,2,1,2,3,1,2,3,2,1,3,1,2,3
1,2,1,3,2,3,2,1,3,1,3,2,1,2,3,1,2,3,2,1,3,1,3,2
1,2,1,3,2,3,1,2,3,1,3,2,1,2,1,3,2,3,2,1,3,1,2,3
1,2,1,3,2,3,1,2,3,1,3,2,1,2,3,1,2,3,2,1,3,1,3,2
1,2,1,3,2,3,1,2,3,1,3,2,1,2

ON ERROR GOTO 2540

VDU 26:CLS:IF ERR=17 THEN CHAIN "AUTO"

REPORT:PRINT" at line ";ERL

PRINT:PRINT"Pre [Function] [X] for Notepad Main Menu"

DEF PROCassemble
fopenout=sB8AS

finblock=sB896
fclose=5B890

FOR PASS = 0 TO 2 STEP 2
PY=2%

opT PAsS
.scrn_to_disk

CALL map_scrn_in
LD HL, &F000

LD DE, £8000

LD BC, £1000
LDIR

CALL map_scrn_out
LD HL, filename
CALL fopenout
RET NC

LD HL, &8000

LD BC, £1000
CALL foutblock
JP fclose

.scrn_from disk

LD HL, filename

. froml

LD HL, 8000
LD BC,£1000
CALL finblock
CALL fclose

Advanced User Guide

47

3010 CALL map_scrn_in
3020 LD HL, £8000

3030 LD DE, &F000

3040 LD BC, £1000

3050 LDIR

3060 CALL map_scrn_out

3090 RET

3100

3110 .map_scrn_in
3120

3130 LD A, (&B003)
3140 ate) A
3150 LD A, 67

3160 LD (&B003),A
3170 OUT (&13),A
T

3200 .map_scrn_out
3210 :
3220 LD A, (state)
3230 LD (&B003),A
3240 OUT (513),A
RET

0 :
3270 .filename
3290 DEFM "DEVIL.SCN":DEFB 0
3310 .flag
3330 DEFB 0

o

state

3370 DEFB 0
3380)

3390 NEXT
3400 ENDPROC

FOOD.BAS
Food Additive Guide

E124

'“:H PTI'R"? ul?" Fresh produce, dried milk, tea or coffee

E-‘ ”Ei itm wlrvn i:ﬂ]l(lvﬁ PO?DV. col

V
o T el aadTt

ijggen’s Support Group

FOOD BAS, better watch out for this additive

48 The Amstrad Notepad

In these days of i it's ising how little we still
know about exactly what goes into our food. The consumer laws that forced
manufacturers to put detailed ingredients on food labels still have a long way to go,
as labels often list a great number of the additives under their notorious E numbers,
rather than by name. And although you can use a specialised dictionary to look up the
plain English names of most additives, when they’re listed by number only, the job is
that much harder.

FOOD.BAS is a program that tells you a great deal more about your food than the
label on the side does, and it identifies nearly every additive that has a significant
side-effect — as a worryingly large number of them do.

It manages this by recognising that every "E" number lies within a band that have
similar functions, and therefore it doesn’t need to know about every additive in
existence to be able to tell you at least something about each.

However, Food maintains an extra database (currently 73 additives) of some of the
most doubtful "E" numbers presently in use within the EEC to give you more specific
information, such as the possible side-effects and the groups considered to be most
sensitive to (or even at risk from) these effects.

But when using Food please bear in mind that the information and advice given is
gleaned from the various consumer guides available, and is not guaranteed by the
program author to be 100 percent accurate, reliable or up to date. If in doubt, please
consult your doctor before panicking and removing a particular food from your diet
purely on the strength of information contained in this program.

The program is called Food for Thought as, hopefully, it will at least give you that.
USING THE PROGRAM

Type in the listing and save it as FOOD.BAS before trying it out. Type:

RUN

and immediately the program will prompt you to enter an "E" number.

Food labels sometimes show additive numbers with an "E" before them, and some
don’t. It makes no difference to the program whether or not you include the letter E
in your input, but you may be interested to know that additives have not been fully
approved by the EEC unless they start with this letter (the most notorious example is
621 — good old Monosodium Glutamate).

So enter a number about which you would like some information and press [Return].
If the number doesn’t lie within a recognised additive band you will be told so, and
asked to press [Space] before returning to the input prompt (note that the bands, while
at present stable, may have been added to or widened since this program was written

Advanced User Guide 49

— in which case, you won’t be able to get information on some otherwise recognised
additives).

If Food recognises the number then almost straightaway it will draw an information
card, and list the details for the additive under these headings:

Type: This is the broad, generic name of the band within which the
additive lies; for example Permitted Colours.

Notes: Here a brief description of the additive’s general purpose is
given, or perhaps a special note.

Side Effects: Empty, unless the additive is one of the few for which
recognised side effects exist.

Risk Groups: Empty, unless side effects exist — in which case the specific
groups of people affected are listed, if any.

Warnings: Empty, unless side effects exist — in which case any particular

warning that applies is given.

At the top left of the card, Food will print the additive number in large type on the
card tab, and if it is an additive it has specific information about it will also know
whether the additive is officially recognised by the EEC, and if so will print an "E"
before it.

‘When you have read the card press [Space] to return to the input screen, where you
can enter a new additive number.

HOW IT WORKS

30 Points the Basic error handler to Food’s own error handling
routine at line 1950.

40 Calls PROCsetup to initialise the program, then sits in a

REPEAT...UNTIL loop taking additive numbers with
PROCinput, looking them up with PROCsearch and displaying
the information with PROCcard.

80-140 Set the number of special-case additives, dimension the arrays
and read in all data.

180-200 Clear the screen, print the program title and prompt for an
additive number.

210 Draws a small box large enough for the user’s input and clears
legal% before entry and validation of a number.

220 Sets up an outer REPEAT...UNTIL loop within which a small

text window is created inside the input box. Then sets up an
inner REPEAT...UNTIL loop within which the user’s input is
read into e$, exiting only when e$ is not empty. Then prints the
number in the window again in case it scrolled during input.

50

The Amstrad Notepad

230

240

250-270

280

310-400

440

450

460

470

480

490

500

530-540
550-590

Sets i% to point at the first actual digit of e$, by examining the
first character to see if it is an upper case E.

Sets €% to the VALue of e$, using i% to make sure the E (if
present) is skipped. Cancels the window and validates the
number with a call to FNlegal().

Print an error message if the number is invalid, wait for [Space],
and overprint the message with spaces. This is split over three
lines for clarity.

Repeats the outer loop until the number is validated
(legal%=TRUE).

Validate the number passed in n% by checking if it falls within
the currently active additive bands. If so, set cat% to the value of
that band and return TRUE. If not, return FALSE.

Fetches the category (type$) and the notes (note$) for the current
additive, as any legal number has at least this much information
available.

Sets the default value of effects$, group$ and wamn$ before
searching the database. Stores the additive number as a string in
nums.

Sets a found flag, f%, to FALSE, and starts a FOR...NEXT loop
(with a% as the loop counter) to search the database for a match,
using e%=enum%(a%,1). If one exists, sets the temporary
variable m% as a place-marker into the database at the position
where the match was found, sets f% to TRUE, and forces an
early (but legal) exit from the FOR...NEXT loop by setting the
loop counter a% equal to the loop limit max%.

Ends the search loop, and returns from the procedure if % is
false. Otherwise, pulls the side effect of the additive from se$()
into effect$.

Pulls the risk group from rg$ into group$ and the warning from
sc$ into warn$.

If the current database entry contains a 1 in its first subscript
then this is an official "E" number and num§$ is sct to E,
otherwise num$ is set to empty.

Builds the "E" number to be displayed on the card tab by
converting e% into a string and adding it to whatever num$
currently holds.

Cancel any windows and print the outline of the card.

Print the five headings and the messages obtained for the
additive.

Advanced User Guide 51

600-610

640-660

690

700
710
720

730-740

780-970

1010-1150

1190-1300
1340-1380
1420-1470
1510-1530
1510-1530
1550-1930

1950

1960

1970

Print a prompt and wait for [Space] to be pressed before
returning.

Print the additive number, num$, on the card tab in customised
characters, by first setting the X and Y origin far enough from
the tab’s right edge to accommodate the whole number, and then
by calling PROCbig() for each character in the string.

Sets c¢% to point into the custom character array at the right
place for the character passed in c$ by subtracting 48 from its
ASCII code, or if ¢$ is an E, by forcing c% to equal 10.

Starts the outer row loop.

Starts the inner column loop

Extracts each character from the line in the array chr$() pointed
to by y%, and plots a point at the current X and Y graphics
coordinates if the character just extracted is a 1.

End the inner and outer loop before returning,

List the name and notes for each additive category recognised by
the program, to be read into cat$().

List the special case database of additives to be read into
enum%(). Each entry is five numbers long, in the following
order:

Official "E" number: 1 if Yes, 0 if No

Additive number: The number proper.

Side effects: Index into se$().

Risk Groups: Index into rg$().

Warning: Index into sc$().

List the side effects to be read into se$Q).

List the risk groups to be read into rg$().

List the warnings to be read into sc$().

List the bit map of the custom character 0, as read into chr$().
List the bit map of the custom character 0, as read into chr$().
List the remaining custom character bit maps, in the order 1, 2,
3,4,5,6,7,8,9,E.

Points the Basic error handler to a full error report in the event
of a further error occurring whilst attempting to run AUTO. This
is in case AUTO isn’t present on your Notepad.

Attempts to run the menu program AUTO if the error was
generated by pressing the [Stop] key.

If the error was caused by something else, or if AUTO isn’t on
your Notepad, a full error report is displayed.

52

The Amstrad Notepad

1980

After the error report the Notepad will be left in BBC Basic, so
this message is displayed to remind users of how to return to the
Notepad main menu.

Functions and procedures

PROCsetup
PROCinput
PROCsearch

PROCcard
PROCenumber

PROCbig
FNlegal()

Sets up the arrays, reads in the special case additive database and
the customised numeric typeface.

Displays program title and prompts for an additive number to be
entered.

Performs a search on the database to see if the additive is one
with known side effects.

Displays the information card and the additive information.
Prints the full "E" number on the card tab in the customised
typeface.

Prints a single digit or the letter E in the customised typeface.
Checks if the additive lies within a currently established band.

Main variables and arrays

max%

cat$Q

enum%()
se$0
830
5c80
chr$Q

e$

num$

legal%
cat%

note$
effect$
group$
warn$

‘The number of additives in the special case database.

Holds the category name and notes for each currently established
band of additives.

Holds the database of additives with side effects.

Lists the side effects used by the database.

Lists the risk groups used by the database.

Lists the warnings used by the database.

Holds bit maps of the 11 customised characters (digits 0 to 9 and
the letter E).

The additive number entered by the user.

The additive number stripped of any E and held as a string, for
later use in PROCenumber.

‘Whether the current additive exists.

The category or band number within which the user’s additive
lies.

The current additive’s category.

The current additive’s category notes.

The current additive’s side effects (if any).

The current additive’s risk groups (if any).

The current additive’s warning (if any).

Advanced User Guide

53

The prog:am
m REM Food for Thought

!0 ON ERROR GOTO 1950

L 0

60 DEF PROCsetup

70 CLS:PRINT "Please

80 max#=73:DIM nzt(a 1)
chr§ (10,13)

90 FOR n¥=0 TO 9:READ un(nq,n) cat$ (n¥, 1) :NEXT

100 FOR y4=0 TO max¥:FOR x¥=0 TO 4:READ enums (y%,x%) :NEXT:NEXT

110 FOR n%=0 TO 11:READ nt(nh) NEXT

120 FOR n¥=0 TO 4:READ rg$ (n%) :NEXT

130 FOR n%=0 TO 5:READ sc$ (n$) :NEXT

140 FOR y%=0 TO 10:FOR x%=0 TO 13:READ chrf (y%,x%) :NEXT:NEXT
150 ENDPROC

rum® (maxt, 4) , se$ (11) , 298 (4) , sc8 (5) ,

170 DEF PROCinput
180 CLS:PRINT TAB(22,1);CHR§(17); "Food for Thought";

190 PRINT " - The mnxvo Guide";CHRS (18) :PRINT TAB(19, 3) m‘(ﬂ),

200 PRINT "Type in the ""E"" Number you wish to identify'
210 MOVE 218,14: oRAN 266,14:DRAW 266, 26:DRAW 218, 26:DRAW
218,14:1egals=0

220 REPEAT:VDU 28,37,5,42,5:REPEAT:CLS:INPUT "" @§:UNTIL e§<>"":PRINT

e8;
230 IF (ASC(LEFTS(e$,1))AND 223)=69 i%=1 ELSE 1¥=0
240 @%=VAL (RIGHTS (a8, LEN (e§) -1%)) :VDU 26:1legal¥=FNlegal (e%)
250 1P NOR lagalt FRINE BAR(0, 7}, "sor
260 IF NOT legal¥ PRINT " - pre:
270 IF NOT legal$ PRINT nn(u,'l):spcus):
280 UNTIL legal$:ENDPROC
290 :
360 DEF Filagal (b)

>=1

REPEAT:UNTIL GET=32

cat¥=0:=TRUE

AND

320 IF n¥>=200 AND n¥<=290
330 IF n¥>=300 AND n¥<=321
340 IF n¥>=322 AND n¥<=495
350 IF n¥>=500 AND n¥<=620
360 IF n¥>=621 AND n¥<=637
370 IF n¥>=900 AND n¥<=904
380 IF n¥>=905 AND n¥<=907
390 IF n¥>=920 AND n¥<=927
400 IF n¥>=1400 AND n%<=1442 THEN cat
410 =FALSE

430 I;lI‘ PROCsearch
440 typeg=cats (cats,0) : nons-e.co(e-n 1)
a.

470 NEXT:IF NOT £% THEN ENDPROC ELSE Iff.ﬂt.- l(lnuni (m%,2))
480 group$=rg$ (enumt (m%,3)) : warn$=sc$ (enums (m%, 4))

490 IF enumt(m%,0)=1 num§="E" ELSE num§=""

500 num§=num§+STR (e%) :ENDPROC

10 :

520 DEF PROCcard
530 VDU 26:CLS:MOVE 0, 0:DRAW 479,0:DRAW 479,58
540 DRAW 50, 58:DRAW 48, 63:DRAW 0, 63:DRAW 0,0:

, mot a valid ""E"" Number";

£4=TRUE : a¥=max¥

54 The Amstrad Notepad
TAB(9,1) ;CHR$ (17) ; "Type: ";CHRS(18);type$
TAB (8, 2) ; CHR$ (17) ; "Not. ";CHRS (18) ; note$
TAB(1,3) ;CHRS (17) ; "Side Effects: ";CHRS (18);effect$

TAB(2,4) ;CHRS (17) ; "Risk Groups: ";CHRS (18):group$
TAB(S,5) ;CHR$ (17) ; "Warnings: ";CHR$ (18);warn$; : PR
TAB(23, 6) ;CHRS (17) ; "Press SPACE to try a new additive";

0 REPEAT:UNTIL GET=32:ENDPROC

630 DEF PROCenumber

640 len%=LEN (num$) :xo%=43:

en$:yo$=60:FOR n=1 TO len%

650 PROCbig (MIDS (num$,n%,1)) :xo%=xo%+8

660 NEXT:

ENDPROC

680 DEFPROCbig(c$)

690 IF c§="E" c=10 ELSE c%=ASC(c$)-48

700 FOR y$=0 70 13

710 FOR x%=0 T0 7

720 I KIDG (chrf (o¥,Y4) X441, 1) ="1" PLOT 69, xttzok, yob-yh

740 mx

780 DATA

870 DATA
880 DATA
890 DATA
900 DATA
910 DATA
920 DATA
930 DATA
940 DATA
950 DATA
960 DATA
970 DATA
lm

ENDPROC

760 REM Categories and Notes
70 :

"Permittad Colouring"
"Allowed in all except fresh produce, dried milk, tea or

"Preservative”
"Helps ensure food safety. Avoid only when you know food is

"Permitted Antioxidant"

y-p: foods g with the air"
"Emulsifier / Stabiliser”
"Alters the handling properties of foods, especially packet

"Miscellaneous Additive

"Part of the firming, gaxung and anti-caking agent group"
"Flavour Enhancer
"Works by increasing
"Glazing Agent”
"Provides a polish to sugar confectionaries such as chewing

liva flow or by stimulating taste buds"

"Mineral Hydrecarbon"

"Prevents some dried foods drying out "

"Bleaching Agent"

"Used to bleach, mature and improve various types of flour"
"Modified Starch"

"Where did you buy this food? This additive is illegal in the

990 REM Additives with noticeable side effects

1030 DATA
1040 DATA
1050 DATA
1060 DATA
1070 DATA
1080 DATA

Advanced User Guide

55

DATA
DATA
DATA
DATA
DATA
DATA
DATA

REM Specific Side Effects

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA

"None known"
"Hyperactivity in children"
"Allergic reactions"

"Skin rashes/irritation"
"Headaches and/or dizzin
"Nausea and/or vomiting
"Internal irritation"
"Gastric/digestive up

"Severe internal upsets
"Toxicity"
"Respiratory difficulti

REM Specific groups at risk
0 :

"None"
"Very young children"

"Asthmatic/aspirin sensitive people"

“"People with allergi
"Kidney and/or heart patients"

REM Special Conditions

DATA
DATA

children"

1440
1450
1460
1470
1480
1490

DATA
DATA
DATA
DATA

"Not permitted in foods intended for babies and/or young

"Not

"Suspected carcinogen”

REM Sprite Data

DATA
DATA
DbATA
DATA
DATA
DATA
DATA
DATA
DATA
‘DITI
DATA
DATA

DATA

"00111000", "01000100", "11000110", "11000110", "11000110"
"11000110","11000110", "11000110", "11000110", "11000110"
000106", "00111000"

"11000110", “1100011

"00011000", "00111000",

00011001

"00111000", "01000100",
"00000110", "00001100"

"00111000", "01000100", "11000110", "11000110", "00000110"
00000100", "00011000", "00000100", "00000110", "00000110"
#11000110", "11000110", "01000100", "00111000"

"00001100", "00001100", "00011100", "00011100", "00101100"

01111000, *00011000", "00011000"
00011000*, "00011000", "00011000"
"00011000", "00011000", "01111110"

11000110, "11000110", "00000110"
,"00011000", "00110000", "00100000"
"01100000", "01000000", "11000110", "11111110"

by the ‘s Support Group"
"Should be avoided by asthmatics as potentially danqo:cu-"
"Should be avoided by people with impaired kidney

56

The Amstrad Notepad

1680 DATA
1690 DATA

1710 DATA
1720 DATA
1730 DATA
1740 :

1750 DATA
1760 DATA
1770 DATA

1790 DATA
1800 DATA
1810 DATA
1820 :

1830 DATA

-
13
2
H
»

1850 DATA
1860 :

1870 DATA
1880 DATA
1890 DATA

1910 DATA

1920 DATA
1930 DATA

1960 VDU

1970 REPOR!

"00101100"
"11111110"

711111110
"11111000"
110001107

"00111000"
"11111000"
"11000110"

"11111110"
"00000100"
"00011000"

"00111000"
"01000100"

,"01001100", "01001100", "10001100", "10001100"
,"00001100", "00001100"

"00011110"

+"11000110", "11000000", "11000000", "11000000"
+"11000100", "10000110", "00000110", "00000110"
,"11000110", "01000100", "00111000"

,"01000100", "11000110", "11000110", "11000000"
,"11000100", "11000110", "11000110", "11000110"
+"11000110", "01000100", "00111000"

,"11000110", "11000110", "11000110", "00000110"
,"00001100", "00001000", "00011000", "00011000"
+"00011000", "00011000", *00011000"

01000100, "11000110", "11000110", "11000110"

+"00111000", "01000100", "11000110", "11000110"

"11000110", "11000110", "01000100", "00111000"

001110007, "01000100", "11000110", "11000110", "11000110"

"11000110"
"11000110"

"11111110"
"01100100"
"01100000"

010001107, "00111110", "00000110", "00000110"

,"11000110", "01000100", "00111000"

,"01100110", "01100010", "01100000", "01100000"
,"01111100",
,"01100010", "01100110", "11111110"

7011001007, "01100000", "01100000"

1950 ON ERROR GOTO 1970
26:CLS:IF ERR=17 THEN CHAIN "AUTO"

RINT" at line ";ERL
1980 PRINT:PRINT"Press [Function][X] for Notepad Main Menu"

INKEY.BAS
Negative INKEY emulator

INKEY(-N) emulator
Press any key combinations, or [Stopl to end...

The value is: &3 W

INKEY .BAS, simple, but very useful

One of the most useful features of Basic on the BBC Micros is the INKEY()
statement in conjunction with a minus value whereby, (for example), the function
INKEY(-99) would test whether [Space] is currently held down.

Unfortunately, only the simpler INKEY(time) and INKEY$ are supported by the
Notepad. However, there is a routine built into the Notepad’s firmware which will
test the keys (with the exception of [Shift], [Control] and [Symbol] pressed on their

Advanced User Guide 57

own), and the program(ette) INKEY.BAS illustrates how you can incorporate this into
your own programs.

USING THE PROGRAM
Type in the listing and save it as INKEY.BAS before trying it out. Then type:
RUN

and the screen will clear and wait for you to press keys. When you do, the value
associated with that key will be shown in hexadecimal. If a particular key
combination is inactive, the previous value will remain displayed. Certain (unlikely to
be needed) combinations will return a value, but it’s always the same: &29F. You are
therefore not to use any inations that return this value because so
many other combinations also return it.

You will find a full list of values for every possible legal key combination in
Appendix 3.

HOW IT WORKS

10-30 These set up the display and prompt the user.

40 Dimensions A% ready to store the machine code.

50 Assembles the machine code into A%.

60 Calls the machine code.

70 Assigns F% the value returned by extracting the two-byte value

that has been placed in buffer. If it is zero then no key was
pressed so GOTO 60 and keep looking.

80 ‘The value returned (F%) is converted to a single hexadecimal
number and displayed.
100-130 The assembly procedure. PASS is used in a FOR...NEXT loop

for a two-pass assembly and each pass P% is set to the start of
the destination area for the machine code (A%).

150 The label inkey is assigned so that Basic can call the more
recognisable inkey, rather than CALL A%, which could mean
anything.

160 The firmware routine KMREADKBD is called.

170 The register pair HL is set to point to a buffer that was created
during assembly in order to hold the value returned by
KMREADKBD.

170-210 The buffer is now loaded with the values of the registers B and

C which, together, make up the two-byte result, and the code
returns to Basic.

58 The Amstrad Notepad

Functions and procedures
PROCassemble Assembles the machine code.

Main variables and arrays

A% An array to hold the assembled machine code.

inkey The start of the machine code.

F% The value returned.

buffer Area following the machine code in which the two-byte value
returned by KMREADKBD is placed.

P% Pointer to the area of memory to assemble to.

The program

10 cLs

20 PRINT "INKEY(-N) emulator"

30 PRINT:PRINT "Press any key combinations, or [Stop] to end..."
40 DIM A% 100

50 PROCassemble

60 CALL inkey

70 F=buffer?0+buffer?1:IF F4=0 THEN GOTO 60

80 VDU 31,0, 6:PRINT "The value is: &"; F%;" »r

90 GOTO 60
100 DEF PROCassemble
110 0
120
130 [
140
150
160
170
180
190

MORTGAGE.BAS

Loan calculator

MORTGAGE BAS, how big a mortgage can you afford?

Advanced User Guide 59

This is a very simple program to check how many years a mortgage will take to clear.
With it you can enter the total amount of loan, current interest rate and monthly
payment and the program will calculate how many years it will be before you have
paid off the loan, and what the total repayments amount to.

Having done that you will then be able to enter varying amounts for your monthly
repayments to see what difference the effect of paying more or less each month
would have. However, the program will not allow for a repayment less than the
minimum monthly payment required to pay off a mortgage because below a certain
amount a mortgage would never get paid back and would actually increase each year.

A further point to note is that calculations assume all interest due in each year is paid
in 12 equal monthly instalments and that an amount extra is also paid towards
reducing the balance. So you cannot use this program to check an endowment (or
with profits) mortgage. Also, it is assumed that interest rates remain static throughout
the entire period of the loan.

If interest rates are currently fairly high (15%) or fairly low (5%), it might be an idea
to adjust the rate to take an educated guess for future changes. For example, a 15%
rate might level out over 25 years to an average of 11% or 12%, while a rate of 5%

might more realistically average out at 9% or 10%. In any event, when you do this,
you should not be optimistic.

USING THE PROGRAM

Type in the listing and save it as MORTGAGE.BAS before trying it out. Then type:
RON

You will then be prompted to enter the amount of the loan, the prevailing interest rate

and your current monthly repayment. Having done this the program will work out
how many years the mortgage will take to pay off and the total amount repaid.

HOW IT WORKS

30 Clears the screen.

40 Points the Basic error handler to a new routine at line 220.

50-80 Prompt the user for the three items of data.

90-110 If the monthly payment is not sufficient, tell the user what the
minimum is, and ask for the input again.

120 Sets the year counter to year one.

140 Repeats until finished.

150 Adds the accrued interest for the current year to the amount of

mortgage outstanding. Then deducts the total repayments made
this year.

60 The Amstrad Notepad

160 Prints the current year and how much money is still to be repaid.

170 Increments the year.

180 Looks back to line 140 until the balance is 0 or less.

190-200 Print the total amount repaid and re-run the program.

210 If there was a typing error, or the menu program AUTO was not
found then this line tells Basic to GOTO line 230.

220 The user pressed [Stop] so the program has finished. Now call
up the menu program, AUTO.

230-240 Either there was a typing error in the listing or the file AUTO

was not found. In any event, print the error message and the line
at which it occurred and remind the user how to get back into

the Notepad.
Main variables
amount% ‘The amount of the loan.
rate% The interest rate.
payment% The monthly repayment.
year% The current year.

The program

10

REM Mortgage & Loan Calculator

20 :

30
40
50
60
70
80
90
100
110

cLs

ON_ERROR GOTO 220

PRINT "Mortgage calculator”:PRINT
INPUT "Enter amount of mortgage
INPUT "Enter interest rate
INPUT "Enter monthly payment

IF payment$ > (amountd* (rate$/l
PRINT " Repayment must be at 1
coTO 80

years=1

PRINT

REPEAT

";A§ 1munut (:-n\/mo))/12

(rate%/100) -pay 12
PRINT "Year ";yeart;" Outstanding: _";amount®
year$=year$+1
UNTIL amount$ <= 0
PRINT:PRINT "Total repaid _";year$*payment¥*12
PRINT "Press any key for another calculation..
ON ERROR GOTO 230
VDU26:CLS:IF ERR=17 THEN CHAIN "AUTO"
REPORT:PRINT " at line ";ERL
PRINT:PRINT "Press (Function](X] for Notepad main menu”

Advanced User Guide 61

READYREC.BAS

Statement reconciler

3 Ready Reconciler
lg%:é TOTAL
|

READYREC BAS, makes reconciling a doddle.

How often have you wished that your calculator could tot up a column of figures, but
allow you to make corrections to the entries afterwards? It’s a common need, both in
business and the home. Whether you’re trying to make sense of an order book, your
cheque book or even a till receipt, the problem is identical, and is the main reason for
the huge popularity of spreadsheet programs.

Spreadsheets allow you to quickly trace discrepancies in a list of numbers or

it and make if need be. You can even try out what if?
scenarios with your figures, by adding one or more hypothetical purchases or sales
and then seeing if the new total benefits you in some way.

READYREC.BAS is a program that allows you to do just this. It’s based on the more
complex program CALC.BAS, and even borrows some of the same procedures, but
it’s a lot shorter and simpler to use and understand.

Like Calc, you enter a list of figures or complex calculations in a large Input window,
scrolling back and forth to make changes where needed, while a separate Totals
window displays the current total.

But unlike Calc, the total in Readyrec is calculated from the SUM of every figure or
calculation in the list, and also unlike Calc you cannot enter accumulative expressions
such as this:

+10

This is because by its very nature, Readyrec automatically adds the result of every
new entry to the running total, making such expressions meaningless.

Depending on your profession you will find Readyrec either more or less useful than
Calc, and it is because the two programs fill two such different needs that they have
both been included in this book, despite the unavoidable repetition of some sections
of code from each.

62 The Amstrad Notepad

USING THE PROGRAM
Type in the listing and save it as READYREC.BAS before trying it out. Then type:

and the cursor will now be sitting in the bottom left of the Input window, between the
two arrows that indicate where your typed input will go. Now type in any number, or
legal BBC Basic expression such as:

10#%37/100

Notice that your input is shown in bold text as you type. In fact, the contents of the
bottom line of the Input window are always shown in bold, because when you are
scrolling through previous calculations it serves to highlight the one currently under
the cursor. Press [Return] and Readyrec will scroll the Input window up one line, and
the Total window will show the result of the calculation.

Now try entering a few simple calculations until the first has completely scrolled off
the top of the display, and see how the total in the Total window changes as the result
of each entry is added on. Now press [Up] a few times, watching as your previous
entries scroll back into view. Note the lines turning bold one by onc as they pass
through the bottom line of the Input window.

Stop at any time and edit an expression (one of the features of Readyrec is that it is
permanently in edit mode, so you can change whatever is under the cursor at any
time). Remember that you MUST press [Return] to register the change — if you move
off the line with [Up] or [Down], Readyrec will restore the old contents of the line.
To clear all entries, instead of a calculation type:

CLEAR

(in upper case) and then confirm your decision with the [Y] key.

Line editing is provided by Readyrec, including all the standard editing key functions
you would expect. Here's a complete list of the movement and editing keys used in
Readyrec:

[Right] Cursor right — Moves the cursor one character to the right.

[Left] Cursor left - Moves the cursor one character to the left.

[Up] Previous line — Scrolls the Input window down, and places the previous entry on
the editing line.

[Down] Next line — Scrolls the Input window up, and places the next entry on the
editing line.

Advanced User Guide 63

[Del->] Delete character under cursor — The rest of the line is shunted to the left,
while the cursor remains stationary.

[<-Del] Delete character to left of cursor — The rest of the line is shunted to the left,
and the cursor also moves one position to the left.

[Control][E] Delete to end of line — All characters to the right of the cursor are
deleted, as well as the character under the cursor (ideal for clearing an old line ready
for a new entry).

HOW IT WORKS

30 Calls the setup procedure, and points the Basic error handler to
Readyrec’s own error handling routine.

40 Endlessly calls PROCinput and PROCcalc until [Stop] is
pressed.

70 Draws the editing line arrows.

80-90 Draws both window borders.

100-110 Print the program title and the Total window title.

120-170 Print a summary of the instructions in the Input window, which
will disappear once the first line is entered.

180 Dimensions the calculation storage array, calls PROCclear to

print a 0 in the Total window, and tells Basic to display all
numbers to 10 significant figures (the maximum).

210 Runs through AS(), setting all elements to "" (empty).

210 Resets both array pointers, clears the total and displays it in the
Total window.

240-280 Set up three text windows. In order of appearance they are the
editing line, the Input window and the Total window.

310 Sets up the edit window, pulls the current calculation from A$()

into e$, gets its length, sets the editing cursor to the left edge of
the window, prints the expression in bold, starts the main input
loop and reads a keypress into key%.

320-380 Check the key in key%, and carry out the appropriate editing or
movement function.

390 If the keypress was a normal character, inserts it into e$ at the
current position by calling PROCinsert.

400 ‘When [Return] is pressed, checks if CLEAR was typed. If so,
calls PROCwipe — but if e$ is empty, it’s forced to contain 0 for
the sake of appearance.

410 Puts the new expression into AS$() at the current position and

advances the array pointer ptr% (and max% if ptr% was already
at the highest element used so far).

The Amstrad Notepad

420

430
460470

500-510

540-550

580-590

620

650-670
700-720
750-770
800-820
850-860

900-920

950
960
970

1000-1020

1030

1080

Checks that max% hasn’t exceeded the limits of the array ASQ —
otherwise adjusts max%.

Draws the new Input window contents and returns.

If x% isn’t already at the left-hand side, move it left and redraw
the editing line to show the new cursor position.

If x% isn’t already at the end of the line, move it right and
redraw the editing line to show the new cursor position.

If the pointer isn’t already at the start of the array, move it to the
previous line, display the new window contents and fetch the
new line for editing.

If the pointer isn’t already at the last entry in the array, move it
to the next line, display the new window contents and fetch the
new line for editing.

Calls PROClist to update the Input window, pulls the current line
from AS() into e$, gets its length, sets the editing cursor to the
left edge of the window, sets the edit window up and prints the
expression in bold.

Insert the character key% into e$, if it isn’t already at maximum
length.

Remove character to left of current character from e$, unless at
start of e$.

Remove current character from e$, unless at end of e$.

Truncate e$ at the current position, unless at end of e$.

Print ¢$ in bold, followed by the current character in inverse to
act as the cursor.

Clear Input window and fill it from A$(), starting from either
five lines before the current line, or the start of the array if less
than five entries exist.

Clears the total and starts running through each entry in the array
AS$(), evaluating and adding its total to tot if it isn’t a blank line.
Finishes adding the totals, converts the new total to a string so
that it can be padded with spaces and appear right-justified.
Prints the new total bin the Total window, in bold text before
returning.

In answer to the user typing CLEAR, display a safety message
on the editing line in bold. If user presses [Y] in response, clear
all entries with PROCclear.

Calls PROCnewline to redraw the Input window and put the
current calculation back in the editing line before returning.
Resets Basic’s numeric accuracy to normal and attempts to run

Advanced User Guide 65

1090

1100-1120

1130
1140

the menu program AUTO if the error was generated by pressing
the [Stop] key.

If the error was No such file, AUTO isn’t on your Notepad so
jump to the full error report.

If the program gets to here an illegal calculation was made. The
user is informed and asked to acknowledge by pressing [Space].
PROCnewline is called to redraw the Input window and
redisplay the current calculation on the editing line, and a direct
jump is made back to main loop at line 40. Important: This can
only be allowed to happen a certain number of times before the
Basic stack overflows with PROC calls that the error handler has
jumped out of before reaching the ENDPROC.

Displays a full error report.

After the error report the Notepad will be left in BBC Basic, so
this message is displayed to remind users of how to return to the
Notepad main menu.

Functions and procedures

PROCsetup
PROCclear
PROCinput

PROCleft
PROCright
PROCup

PROCdown
PROCnewline

PROCinsert
PROCdell
PROCdel2
PROCdel3
PROChilite

PROClist
PROCcalc

Draws the screen and sets up arrays and main variables.
Clears the Input window, resets the Total window.

Takes input from the keyboard, and calls relevant routines for
inserting and deleting characters or moving around.

Moves the cursor one character to the left.

Moves the cursor one character to the right.

Scrolls the window down and places the previous entry on the
editing line.

Scrolls the window up and places the next entry on the editing
line.

Redraws the Input windows at the current position and fetches
the current line for editing.

Inserts a character into the input line.

Performs [<-Del].

Performs [Del->].

Performs [Control](E].

Prints the current line in bold, and inverses the current character
1o act as a screen cursor.

Updates the Input window.

Clears the total, evaluates all the calculations entered so far, adds
the result of each to the total and displays the new total.

66 The Amstrad Notepad

PROCwipe Displays a safety prompt before calling PROCclear to clear all
entries.

Main variables and arrays

ASO The input array which holds all the calculations.
max% Pointer to the highest element of A$() currently used.
pr% Pointer to the current element of A$() being edited.
tot The total of all calculations entered.

key% The current keypress being examined.

e$ The expression currently being edited.

1% The current length of the expression being edited.
x% The current cursor position on the editing line.

The program

10 REM Ready Reconciler

20 :

30 PROCsetup:ON ERROR GOTO 1080

40 REPEAT:PROCinput:PROCcalc:UNTIL FALSE

50 :

60 DEF PROCsetu;

70 VDU 26:CLS: PRI)IT TAB (0, 6) ; CHRS (27) ; CHRS (16) ; TAB (56, 6) ; CHR$ (27) ;
CHR$ (17) ;

80 MOVE 0, 6:DRAW 342, 6:DRAW 342,57:DRAW 0,57:DRAW 0, 6

90 MOVE 364, 6:DRAW 452, 6:DRAW 452,18:DRAW 364,18:DRAW 364,6

100 PRINT TAB(so 1) cl-mﬂu'l),"nndy Reconciler"”;CHRS (18)

110 PRINT TAB(66, ROCwinlist

120 PRINT TAB(21, o) CHRS (17) ; CHR$ (19) ; "Instructions”;CHRS (20) ; cms(n),

130 PRINT TAB(1,2);"Enter a list of formulae to be summed, using

140 PRINT CHRS (17);CHRS (27);CHRS (30) ; CHR$ (18);", ";

150 PRINT CHRS (17) ;CHRS (27) ;CHRS (31) ; CHRS (18) ; * and "

160 PRINT TAB(1,3);CHRS (17); "Return”;CHR$ (18);" to edit any line. ";

170 PRINT"Type ";CHRS(17);"CLEAR";CHRS$(18):" to clear the list."

180 DIM A$ (255) :PROCclear:@%=5A0C: ENDPROC

200 DEF PROCclear
210 FOR p%=0 TO 255:A% (p%| NEXT

220 max%=0:ptri=0:tot=0:PROCcalc:ENDPROC
230 :

zw DEF PROCwinin:VDU 28,1, 6,55, 6:ENDPROC
25

260 nzr PROCwinlist:VDU 28,1,5,55,1:ENDPROC
zsn nx! PROCwintot:VDU 28,61, 6,74, 6:ENDPROC

:uo DEF PROCinput

310 PROCwinin:e$=A$ (ptrs) :x%:
320 IF key¥=242 PROCleft
330 IF key¥=243 PROCright
340 IF key¥=240 PROCup

350 IF key¥=241 PROCdown
360 IF key$=127 PROCdell

:1%=LEN (e$) :PROChilite:REPEAT: key$=GET

Advanced User Guide

67

370

390
400

420

890

960

IF key%=33 PROCdel2

IF key%=5 PROCdel3

IF key¥<>33 AND key%<>5 AND key$>31 AND key%<127 PROCinsert
UNTIL key%=13:IF e§="CLEAR" PROCwipe:ENDPROC ELSEIF ef="" a$="0"

:IF pf
ptry=ptry-1

A$ (pt P

IF max$>255 max¥=max$¥-.
PROC11st : ENDPROC

DEF PROCleft

IF x¥=1 ENDPROC
X¥=x%-1:PROChilite:ENDPROC

DEF PROCright
IF x%=1%+1 ENDPROC
x\-anl:rmmun:mpnoc

DEF PROCup
IF ptr¥=0 IIDPROC
CLS: ptri=p! :PROCnewl

DEF PROCdown
IF ptri=max% ENDPROC
+PROC;

I.Ill' PROC
PROC1ist .-u (ptrs)

%=1:14=LEN (e§) : PROCwinin: PROChilit

DEF PROCinsert
19=54 ENDPROC

@§=LEFTS (e§,x%-1) +CHRS (ke !)mxcnro (08, 1%+1-x%)

19=1%+1:x4mx¥+1: PROChL11t:

DEF PROCdell
IF x¥=1 ENDPROC

$=LEFTS (6§, x$-2) +RIGHT§ O,qu—xt)
X¥mx8-1:14=18-1:PROCHL11te: ENDER

DEF PROCdel2

IF x%=1%+1 ENDPROC

@$=LEFTS (§, x%-1) +RIGHTS (o8, 1%-x%)
1%=1%-1:PROChilite:ENDPROC

DEF PROCdel3

IF x%=1%+1 ENDPROCA

LEFTS (0§, x%-1)

li-x.-l :PROChilite:ENDPROC

DEF PROChilite

C§=MIDS (e8,x%,1) :IF cf="" c§:
CLS:PRINT CHR$ (17);e$; TAB (x%-1, n) CHRS (14) ; c§; CHR$ (15) ; CHR$ (18) ;
ENDPROC

DEF PROClist

PROCwinlist:CLS:IF ptr¥=0 !WPIOC
IF ptr¥<s P
FOR yi=topt TO 4:PRINT ! ma(n yi) 28 (p%) 5

P
:pY=p¥+1: NEXT: ENDPROC

DEF PROCcalc
tot=0:FOR p¥=0 TO max%:IF A§(p%)<>"" tot=tot+EVAL (A§(p%))
NEXT:PROCwintot : t$§=STR$ (tot) : t§=STRINGS (14-LEN (t§) ,CHRS (32)) +t$

68 The Amstrad Notepad

970 CLS:PRINT CHR$(17);t$;CHRS (18); :ENDPROC
0 :

990 DEF PROCwipe

1000 PROCwinin:CLS

1010 PRINT TAB(11,0);CHR$(17);"Clear list - Are you sure (Y/N)?";
CHRS (18) ;

1020 REPEAT:g¥=GET m 223:UNTIL g¥=89 OR g#=78:CLS:IF g¥=89 PROCclear
1030 PROCAewl ine :ENDI

1050 RBK This last section handles lines rejected by EVAL.

1060 REM Note: Repeated errors will eventually overflow the stack.
1070 :

1080 IF ERR=17 @%=&90A:VDU 26:CLS:CHAIN"AUTO"

1090 IF ERR=214 GOTO 1130

1100 err§="Error in "+A§(p%)+" - press SPAC
1110 PRINT TAB(27-LEN (err$)/2,0);CHR$ (17) ;erc$
1120 REPEAT:UNTIL GET=32:CLS:ptr¥=p%:PROCnewline:GOTO 40
1130 VDU 26:CLS:REPORT:PRINT" at line ";ERL

1140 PRINT:PRINT"Press [Function] [X] for Notepad Main Menu"

SCALES.BAS

Conversion Scales

Conversion Scales | A B B=Ax
Gty: 17

o

(]

SCALES BAS, stay conversant with conversions.

It’s often useful to convert figures from one unit of measurement to another, and by
now most of us know the old trick of multiplying inches by 2.54 to get centimetres.
But it would be nice to have a decent set of conversion tables handy for all occasions,
because you never know when you might need to change ounces to grams or
kilograms, or perhaps litres into gallons.

SCALES.BAS was designed to fill this gap, and it’s much easier to use than those
little bits of paper you can buy to fit inside your Personal Organiser because it does
the conversions for you. Not only that, it will store any number you enter and show it
converted between any one of the many units of measurement it supports (currently
34) - all you have to do is scroll up and down the list, and the program does the rest.

And it’s expandable, should you find its current repertoire too limited. The method is
detailed in the line-by-line pro ion, in the i of lines 790
onward (especially lmes 930 - 1260)

Advanced User Guide 69

USING THE PROGRAM
Type in the listing and save it as SCALES.BAS before trying it out. Type:
RUN

and after a short while (during which it reads in and expands the data) the screen will
change to show a large, scrollable window containing the first few units of
measurement, with the highest pair highlighted in inverse colours.

On the left is the status box into which you can enter a number to be converted. This
is shown next to the word Qty. Below this are two totals, labelled A>B= and B>A=.
The purpose of these will become clear when you look at the larger window which is
divided into three parts: the two units to convert between and the conversion factor
(included purely for show, and as found in standard paper conversion tables).

Above the left and right-hand units of measurement are the letters A and B
respectively, and these are used in the status box to show the direction of conversion
between the two units.

Whatever value is currently entered next to Qty, the number shown immediately
below is the result of converting this value from unit A to unit B, while below this is
the result going the other way — that is, from unit B to unit A.

To take the example of ing from inches to i (which is at the top of
the list when you first run the program), a Qty of 1 would give results of 2.54
ing inches to it and 0.393 i to inches) respectively

Initially the Qty value is set to zero. To enter a number for conversion, press [Return]
at any time. Type in the number and press [Return] again, and the results in both
directions are immediately shown below.

You can now scroll through the various conversions available using the [Up] and
[Down] keys; new results for your original input will be calculated for the currently
highlighted unit pairs as you move through the table, and your input will remain
unchanged until you press [Return] to enter a new value.

HOW IT WORKS

30 Points the Basic error handler to Scale’s own error handling
routine at line 1280, and restores Basic’s original format of
numeric output in the event of an error.

40 Cancels any windows and asks the user to wait while the DATA
is read in and expanded.

50 Calls PROCsetup to read in the data, PROChighlight to invert

the top line of the units of measurement window and then sits in
an infinite REPEAT...UNTIL loop reading keys and fetching the
user’s input.

70

The Amstrad Notepad

90

100

110-130

140-200

210

220

260-280

310

320

330

360

370

380

410

440

480

Stores Basic’s original numeric output format and then sets it
always to display numbers in floating point with a maximum of
three decimal places in a field width of 12. Then clears the input
variable input, sets the array pointer scale% to 1 and sets the
window row pointer row% to 0.

Reads the size of the lexicon, dimensions the lexicon store array
and reads in the words.

Read the size of the table, dimension the array and read in the
data, expanding the numbers into the words that are stored in the
lexicon.

Clear and draw the screen, making good use of VDU statements
to cut down on the number of PRINT CHR$() commands that
would otherwise be necessary.

Prints the starting value, 0, and calls PROCoutput to print both
conversions (quicker than printing 0.000 on the result lines).
Activates the main window and prints the first screenful of
available conversions.

Read the keyboard until [Return] is pressed, checking for the
[Up] and [Down] keys and calling the relevant scroll routine if
either is pressed and the pointer is able to move in that direction.
Un-inverses the current line and decrements both the pointer and
the current screen row.

If the screen pointer is off screen, adjusts it and redraws the
window to simulate a downward scroll.

Inverses the new current line, calculates and displays the new
conversions and returns.

Un-inverses the current line and increments both the pointer and
the current screen row.

If the screen pointer is off screen, adjusts it and executes a line
feed from the bottom line to force an upward scroll, after which
the new bottom line is pulled from the array and printed.
Inverses the new current line, calculates and displays the new
conversions and returns.

Fills the main window from the units of measurement array, with
the current line at the top.

Inverses the entire width of the main window at the current row
position by using PLOT 102 (inverse rectangle).

Flushes the keyboard buffer by reading INKEY(0) until no key
press is returned, then clears the input window and prompts for a
number.

Advanced User Guide 71

490

520

530

570-720

750

790

800-810
820
830
860

870-900

920
930-1260

Clears the input window again, and prints the user’s input so that
it is formatted the same way as the results.

Selects and clears the A>B result window and prints the
conversion going from left to right.

Selects and clears the B>A result window and prints the
conversion going from right to left.

Define the windows used, which in order are program title, table
header, the table itself, input, A>B and B>A.

Returns the passed string with the passed number of spaces
tacked on the end.

Starts reading a complete unit of measurement from data
consisting of four numbers. Each number is an index into the
lexicon, and has been ORed with 64 if the last letter isn’t wanted
(to turn a plural into a singular) or with 128 if the last two letters
aren’t wanted (special case — turns inches into inch). This system
saves on space, effectively doubling the number of words in the
lexicon.

The numbers are ANDed in turn with 64 and 128 and chopped
by one or two characters respectively.

If the number pointed to a real lexicon entry and was not zero
(denoting no word) it is joined to p$ and a space is added —
unless it is the last of the four words.

Closes the loop and returns the newly-concatenated string.

Holds the number of words in the lexicon.

List the words in the lexicon — all the complex strings in the
table are made from these building blocks.

Holds the number of entries in the conversion table.

Hold the entire conversion table as pairs of four numbers
followed by a conversion factor for that pair. The four numbers
each represent a word from the lexicon, but some are further
coded by being ORed with 64 or 128, denoting that the last one
or two letters respectively of that word are not wanted when the
table is constructed. This allows re-using plural words as
singular, so long as all that is required to turn them singular is to
remove no more than two letters from the end.

Functions and procedures

PROCsetup
PROCscan

Dimensions the arrays, reads in the data and draws the screen.
Reads the keyboard until [Return] is pressed, checking for the
[Up] and [Down)] keys and calling the relevant scroll routine if
either is pressed.

72 The Amstrad Notepad

PROCscroll_up Scrolls the units of measurement window down to highlight the
: previous pair of units,

PROCscroll_down Scrolls the units of measurement window up to highlight the
next pair of units.

PROCscreen Redraws the units of measurement window with the current pair
of units at the top.

PROChighlight Inverses the entire width of the units of measurement window at
the current row. Called twice in a row to cancel the effect.

PROCinput Takes a new input from the user and displays it.

PROCoutput Converts the current user input both ways using the current pair
of units and displays the two results.

FNpad(Q Returns the passed string with the passed number of spaces
tacked on the end.

FNconcat Builds the left and right-hand units of measurement strings from
data.

Main variables and arrays

1ex$0 Holds the lexicon of words from which the units of measurement
names are built.

table$Q) Holds the text of the conversion table.

scale() Holds the conversion factors for all units of measurement pairs.

lex% The number of words in the lexicon.

max% The number of entries in the conversion table.

scale% Pointer to the current units of measurement pair in table$() and
its conversion factor in scale().

row% The current screen row in the units of measurement window.

input The current user’s input.

The program

10 REM Sliding Conversion Scales
20 :

30 ON ERROR @%=fmt$:GOTO 1280
40 VDU 26:CLS:PRINT "Please wait...
h1ight :REPEAT

:UNTIL FALSE

caled=1:rows=0

OR n¥=1 TO lex%:READ lex$ (n%) :NEXT

110 READ max$:DIM table$ (max$):DIM scale (max%) :FOR n¥=l TO max%

120 t1§=FNpad 22) +CHR$ (179) : (179)
130 READ f£§:scale(n$)=VAL(£$):t3$=FNpad(£$,11):table§ (n%)=t1§+t2§+t3§:

140 CLS:MOVE 0, 4:DRAW 479, 4:DRAW 479,59:DRAW 0,59:DRAW 0,4

Advanced User Guide 73

150 MOVE 123, 4:DRAW 123,59:MOVE 123, 43:DRAW 479,43

160 MOVE 260, 4:DRAW 260, 43:MOVE 398, 398,43

170 PROCwinl:PRINT TAB(1,0);CHR§(17); "Conversion Scales";CHRS(18)

180 PRINT TAB(2,2);"Qty:";:VDU 31,1,4,65, 175 66,32,61,31,1,5, 66,175, 65,

1
190 PROCwin2:VDU 31,11,0, 65,31,34,0, 66

200 VDU 31,47,0, 66, 61, 65,120, 32,32, 65, 61, 66,246
210 PROCwin_in:CLS:PRINT input; :PROCoutput

220 PROCWin3:PROCscreen

230 ENDPROC

250 DEF PROCscan

260 REPEAT:1%=INKEY(0):IF 1%=240 AND scale$>l PROCscroll up
270 IF 1%=241 AND scale%<max% PROCscroll_down

280 UNTIL i%=13:ENDPROC

300 DEF PROCscroll_up
310 PROChighlight:scalet=scale$-1: rn't-ze't-l
IF rowd<0 rowd=0:PROCwin3:PROC

DEF PROCscroll_down
PROChighlight : scale¥=scale$+1: rowt=rows+l
PROCwL.

IF rowk=4 roww=3: n3:VDU 31,0,3,10:PRINT table$ (scalet);
ight :ENDPROC

nn' PROCscreen
FOR g¥=0 TO 3:PRINT TAB(0,g%);tables$ (g¥+scales); :NEXT:ENDPROC

DEF PROCh.
MOVE 126, 64~ (zuwh!)tu PLOT 102,474, 64~ (rowd+4) *8
ENDPROC

DEF PROCA:
REPEAT: UNTIL INKEY(0):PROCWAn_in:CLS:INPUT""input;
CLS:PRINT input;:PROCoutput:ENDPROC

DEF PROCoutput

PROCwin_to:CLS:PRINT input*scale (scalet);
PROCwin_from:CLS:PRINT input/scale(scale%);
ENDPROC

DEF PROCwinl
VDU 28,1,6,19,1:ENDPROC

DEF PROCwin2
VDU

DEF PROCwin3
VDU 28,21, 6, 78, 3:ENDPROC

DEF PROCwin_in

VDU 28,7,3,19, 3:ENDPROC
PROCWin_to

VDU 28,7,5,19,5:ENDPROC

DEF PROCwin_from
VDU 28,7, 6,19, 6:ENDPROC

74 The Amstrad Notepad

740 DEF FiNpad (p$,p%)
750 p$=p8§+STRINGS (p¥-LEN (p8) , CHRS (32))
$

770 :

780 DEF FNconcat

790 p§="":FOR w¥=1 TO 4:READ v%:wé=lex$ (v AND 31)
800 IF v& AND 64 w§=LEFTS (w§, LEN (w§)-1)

810 IF v& AND 128 w$=LEFTS$ (w8, LEN (w$)-2)

820 IF w§<>"" p§=p§+w§:IF wi<4 pS$=p$+CHRS (32)

830 NEXT:=p$

850 REM Lexicon

860 DATA 29

870 DATA Inches,Feet,Yards, Miles, A
880 DATA Pounds Long tons,
890 DATA Kilometres,Litres,Grammes,Kilogrammes, Tonnes, Square
900 DATA Cubic,Nautical,UK,US,per,Minute, Hour,Pints,Kilos, cm
910 REM Conversion Table

920 DATA 34

930 DATA 1,0,0,0,12,0,0,0,2.54

940 DATA 2,0,0,0,12,0,0,0,30.48

950 DATA 2,0,0,0,13,0,0,0,0.3048
960 DATA 3,0,0,0,13,0,0,0,0.9144
970 DATA 4,0,0,0,13,0,0,0,1609.3
980 DATA 4,0,0,0,14,0,0,0,1.609

990 DATA 21,4,0,0,14,0,0,0,1853.27
1000 DATA 19,1,0,0,19,12,0,0,6.452
1010 DATA 19,2,0,0,19,12,0,0, 929.0304
1020 DATA 19,2,0,0,19,13,0,0,0.092903
1030 DATA 19,3,0,0,19,13,0,0,0.836
1040 DATA 19,4,0,0,19,14,0,0,2.58999
1050 DATA 6,0,0,0,19,13,0,0,4046.86
1060 DATA 6,0,0,0,5,0,0,0,0.404686
1070 DATA 6,0,0,0,19,14,0,0,0.004047
1080 DATA 20,1,0,0,20,12,0,0,16.387
1090 DATA 20,2,0,0,15,0,0,0,28.317
1100 DATA 20,3,0,0,20,13,0,0,0.76
1110 DATA 20,2,0,0,20,13,0,0,0.0283
1120 DATA 22,27,0,0,15,0,0,0,0.5683
1130 DATA 22,7,0,0,15,0,0,0,4.546
1140 DATA 23,7,0,0,15,0,0,0,3.785
1150 DATA 22,7,0,0,23,7,0,0,1.20095
1160 DATA 8,0,0,0,16,0,0,0,28.3495
1170 DATA 9,0,0,0,16,0,0,0, 453.59237
1180 DATA 9,0,0,0,17,0,0,0,0.45359
1190 DATA 11,0,0,0,18,0,0,0,1.01605
1200 DATA 11,0,0,0,17,0,0,0,1016.05

1210 DATA 10,0,0,0,17,0,0,0,50.8

1220 DATA 4,24,26,0,2,24,25,0,88

1230 DATA 4,24,26,0,14,24,26,0,1.609344
1240 DATA 4,24,22,71,14,24,79,0,0.35401
1250 DATA 4,24,23,71,14,24,79,0,0.42514
1260 DATA 9,24,19,129,28,24,19,29,0.0703
1270 :

1280 ON ERROR GOTO 1300

'LS:IF ERR=17 THEN CHAIN "AUTO"
RINT" at line ";ERL

[Function] [X] for Notepad Main Menu"

Advanced User Guide 7

STYLE.BAS
Style Checker
Style Master Henu of Optiens No Docunent
i mI'JSI‘ ﬂ oo t t
i Tl ™

STYLE BAS, correct your writing wrongs.

Style checkers are programs that attempt to analyse your writing for errors in
grammar and style, and the better versions manage this seemingly incomputable task
with a fairly high degree of accuracy. It has been argued that you shouldn’t take the
advice offered by these programs too seriously as it tends to be rather pedantic and
robotic, but it’s surprising just what can be leamnt from more modest examples of the
genre, given their limited scope.

STYLE.BAS is just such a program, and while it doesn’t exactly jangle with bells and
whistles it can certainly give some of the big guns a run for their money.

Firstly, though, you should note that Style can seem slow at times, especially when
digesting large documents — but after all, it is written in Basic as opposed to machine
code, and it gets there in the end.

As a fully working, seriously written program Style serves as a good example of just
what you can do with the much maligned Basic language — just don’t let it loose on
your first novel, unless you’ve got some time on your hands.

And now a brief word about style checking (very brief — a full discussion could easily
fill the pages of this book) and in particular the points checked for by Style.

Four distinct areas of writing style are looked at by the program: use of passive verbs,
hidden verbs, abstract nouns and complex sentences. On top of this a full readability
score is generated at the end of each analysis, giving both the standard Fog and
Flesch-Kincaid Indices for the piece.

Passive verbs are by far the worst offenders in writing (readers interested in exploring
the subject further should consult a copy of Fowler's Modern English Usage,
published by Oxford University Press as part of their Oxford Reference series).

And although passive verbs are easy to avoid, they account for most bad writing
habits. Here is an example:

It has been decided that all coffee breaks are now banned.

76 The Amstrad Notepad

‘Who decided it? You can’t tell from the wording, and this is a trick people often use
when they wish to remain anonymous and unconnected with a particular memo or
announcement. The result, apart from being rather impersonal, is a very stuffy and
lifeless writing style.

The trouble is that most people think that this is the correct way to write formally,
when it is actually the worst way to write anything. Here is the corrected version, this
time with the verb to be made active:

1 have decided that all coffee breaks are now banned.

This is much better. Not only is it now clear who was responsible for the decision,
but the whole sentence has come alive, and is more approachable. Well, sort of.

If you can catch passive verbs and, where possible, remove them from your writing,
you’ll probably improve it more than by any other single method.

USING THE PROGRAM
Type in the listing and save it as STYLE.BAS before trying it out. Type:
RUN

and after a short while (during which it reads in and displays a rather inspirational
bust of Shakespeare) the Main Menu will appear.

Press [A] to analyse a new document, and the Notepad File Selector window will
appear. Choose the document you want to analyse and press [Return], and it will be
read in word by word. There is no restriction on the size of documents that Style will
handle, but you’ll have to be pretty patient if you want to see how War and Peace
stacks up against the collected works of Stephen King.

As soon as the document is read, you will get an instant judgement on the right-hand
side of the screen. This is based purely on the reading age that Style judges you
would need to understand the document without difficulty.

Also displayed on the right is the famous Fog Index, as well as the not quite as
famous Flesch-Kincaid Index, should you be interested. Briefly, the higher the Fog
Index the harder the writing is to understand, and a value of 12 is about average.

If you want a more subjective assessment of the piece, press [C] from the Main Menu
for a brief, plain English commentary on the overall style, structure, meaning and
impact of the document.

Pressing [T] displays a short list of tips for good writing, all of them widely
recognised and well-proven. Finally, pressing [Q] will quit Style. So does pressing

Advanced User Guide 77

[Stop) for that matter, but exiting properly ensures that a friendly safety wamning is
always displayed, just in case you pressed the wrong key.

HOW IT WORKS

30 Points Basic’s error handler to line 60, where the program ends
up when it has finished.

90 Dimensions two memory arrays to hold the two machine code
routines used by Style.

100 Loads previously saved screen file from disk, if it exists.

110-120 Draw a border around the screen, and two vertical lines to
delineate the central window.

130 Sets up the left-hand window and prints the program title.

140 Calls PROCbust to draw a picture of Shakespeare — this is

jumped over if the program has been used at least once, in which
case the ready-drawn screen will be loaded into display ram.

150 Calls PROCnew to reset the readability scores and document
name, and sets up various thresholds used during analysis.

160-180 Dimension the comment arrays and read in all the style
comments.

190-200 Dimension the passive and hidden verb arrays and read in the
passive verb partners and hidden verb endings.

210 Saves the screen, if no screen file for this program exists.

240-250 Clear the document flag and current document name, and reset
the readability scores.

260 Displays the current document status.

280-320 Define the three text windows, which in order are: the left hand
box, the central window and the right hand status box.

350-360 Display the current document name, and if none is loaded return
from the procedure.

370440 Display the overall readability rating.

450 Sets up Basic’s numeric output format to display numbers in
floating point with always one decimal place, in a field width of
five.

460480 Print the document readability statistics: average sentence length,
Fog Index and Flesch-Kincaid Index.

490 Restores Basic’s numeric output format.

520 Sets the origin for the top left of the bust.

530-590 Draw Shakespeare’s bust, by decoding the bit map data into a

36x36 pixel sprite and plotting the pixels individually.
620-640 Plot the point passed by PROCbust at the position of the current

78

The Amstrad Notepad

670-710
720-750

760

800

810

820

830-900

920-960

1020-1040

1080-1110

1150-1220

1250-1260

1280-1300

1320-1340
1360-1400

1420-1470
1490-1510
1530-1580

1600-1630
1650-1670
1690-1710

X and Y loop variables plus the original top-left offset in x0%,
y0%.
Print the menu title and options.
Read the keyboard until a valid key is pressed, and call the
appropriate procedure.
If the interpreter got this far, [Q] was pressed so Style confirms
that the user wants to quit, setting quit% TRUE if [Y] is pressed
in response.
If a document is currently loaded, Style ensures user really wants
to analyse another.
Calls the machine code routine for displaying the Notepad file
selector, after which the screen is reloaded from disk.
If the user pressed [Stop] to exit the file selector, FNselect will
have returned "", so return.
Read in each word from the selected document, counting the
end-of-sentence flags, calculate the overall readability scores, set
the document loaded flag and print the readability statistics.
Prompt the user to press [Y] or [N] to confirm the action passed
in m$. Return TRUE if [Y] pressed, otherwise FALSE.
Calculate the Fog Index and the Flesch-Kincaid Index for the
document just analysed.
Calculate the percentage of sentences in which each of the four
style errors occurred.
Read the next word from the open document, discarding

and setting the end-of-sent flag
eos% TRUE if any of the three main stop characters is found
Return TRUE if the passed character is a letter.
Return TRUE if the passed character is an end-of-sentence
marker.
Set up various counters ready for the start of the next sentence.

Check the passed word for any one of these three style errors:
passive verb, hidden verb, abstract noun.

Return the number of syllables in the passed word.

Return TRUE if the passed character is a vowel.

Check to see if the passed word is the final part of a passive verb
— these are spread across two words, so a flag is already set if
the previous word was the start of a possible passive verb.

Check if the passed word is a hidden verb.

Check if the passed word is an abstract noun.

Check if the sentence just read is complex.

Advanced User Guide 79

1730-1800

1820-1870

1890-1960
1980-2100
2130

2160

2190-2230
2260-2300
23302370
2400-2440
2460-2530

2550-2780
2800

2810

2820

2830

2860

2870-2910
2930-2940

3000

Display a style y based on the of the four
errors checked for that were found.

Return an index into one of the four commentary arrays, taking a
style fault percentage as input.

Display four tips for good writing.

The complete bit map of Shakespeare’s bust.

The words which invariable start passive verb word pairs.

The letters with which hidden verbs invariably end.

List five possible comments pertinent to the overall style of the
piece.

List five possible comments pertinent to the overall structure of
the piece.

List five possible comments pertinent to the overall clarity of the
piece.

List five possible comments pertinent to the overall impact of the
piece.

The function responsible for calling the Notepad file selector
code. The function returns either a file name, or a null string if
[Stop] was pressed.

Assemble machine code that will call the Notepad file selector.
Points the Basic error handler to a full error report in the event
of a further error occurring while attempting to run the menu
program AUTO. This is in case AUTO isn’t present on your
Notepad.

Attempts to run the menu program AUTO if the error was
generated by pressing the [STOP] key.

If the error was caused by something else, or if AUTO isn’t on
your Notepad, a full error report is displayed.

After the error report the Notepad will be left in BBC Basic, so
this message is displayed to remind users of how to return to the
Notepad main menu.

Start of that the screen which
saves a copy of the screen after everything is drawn the first
time, and loads it in each time thereafter.

Define the five NC100 jump block routines to be used.

Begin the two-pass assembly and set P% (the assembly
destination pointer) to the start of the previously dimensioned
Z%.

Pages the 16K of RAM with the video memory in at address
&C000.

80

The Amstrad Notepad

3010-3040
3050
3060-3070
3080
3090-3110
3120
3160-3170
3190-3210

3250-3280

3290-3340

3350-3370

3410-3420

3430-3460
3500-3510

3570-1760
3610
3630

Copy the contents of video RAM down to &8000.

Puts back the video RAM.

Open a file for saving the screen data.

Returns if unable to open the file.

Save &1000 bytes from &8000 to the file.

Closes the file and exits.

Open a file for reading.

If unable to open the file set the contents of flag to zero and
retumn.

Read the &1000 bytes to location &8000 then close the file.
Map the video RAM 16K block into &C000, copy the &1000

bytes from location &8000 up to &F000 and then put back the
screen RAM.

To indicate successful loading, set the contents of flag to 1 then
return.

Save the current status of the bank switcher for block 4
(&C000-&FFFF).

Map the video RAM into main RAM then return.

Restore the state of the bank 4 bank switcher and its copy at
&B003.

The file name STYLE.SCN.
The flag to indicate successful file loading.
Temporary storage of the state of the bank switcher.

Functions and procedures

PROCsetup

PROCnew

PROCstatus
PROCbust
PROCplot
PROCmenu

PROCanalyse
PROCfog
PROCscore

Dimensions all arrays, reads in the data and draws the bust
(unless a screen file is found, in which case this is loaded
instantly).

Resets all the document pointers ready for a new file to be
analysed.

Displays the readability scores in the status box.

Decodes and draws Shakespeare’s bust.

Plots a single point from the bust image.

Displays the main menu and calls one of the three main
procedures, according to the key pressed.

Analyses the document just selected for style faults.
Generates a Fog Index and Flesch-Kincaid Index.

Converts the number of style faults of each of the four types into

Advanced User Guide

81

PROCnewsen

numbers ing the of in which they
occur.

Clears certain variables in preparation for reading a new
sentence.

PROCcheck_word() Checks the passed word for style faults.

PROCpv()
PROChv()
PROCan()
PROCcomplex
PROCcomment
PROCadvice
FNsure()

FNread_word()
FNisalpha()
FNisend()

FNsyllables()
FNv(Q
FNindex()

Checks the passed word for a passive verb event.

Checks the passed word for hidden verbs.

Checks the passed word for abstract nouns.

Checks the sentence just read for complexity.

Gives subjective commentary on the overall style.

Displays four tips for good writing.

Asks for confirmation of a named operation, returning TRUE if
[Y] is pressed.

Returns the next word from the file.

Returns TRUE if the passed character is a letter.

Returns TRUE if the passed character is an end-of-sentence
marker.

Returns the number of syllables in the passed word.
Returns TRUE if the passed character is a vowel.

Returns the passed percentage as an index suitable for pointing
into one of the four comment arrays.

Main variables and arrays

style$Q
structure$()
clarity$0
impact$()
S0
hv$Q
doc%
doc$
words%
sen%
age%
sy%
hard%
hv%

Contains comments on style.

Contains comments on structure.

Contains comments on clarity.

Contains comments on impact.

Contains the words which usually begin a passive verb pair.
Contains the letter which usually end a hidden verb.
Contains TRUE if a document has just been analysed.
Contains the name of the current document, or No Document.
The number of words in the document.

The number of sentences in the document.

The recommended reading age for the document.

The total number of syllables in the document.

The number of hard words in the document.

The number of hidden verbs in the document.

82 The Amstrad Notepad
an% The number of abstract nouns in the document.

cs% The number of complex sentences in the document.

pv% The number of passive verbs in the document.

avlen The average sentence length.

fog The Fog Index of the current document.

fk The Flesch-Kincaid index.

senlimit% The current sentence length threshold.

The program

10
20
30
40
50
60
70
80

REM Style Master

ON ERROR GOTO 60
CLS:PROCsetup

@ NTIL quit$
GOTO 2800

DEF PROCsetup

90 CLEAR:DIM A% 40,%% &80:PROCassemble:PROCassemble2

100 CALL scrn_from disk:IF ?flag=0 THEN CLS ELSE GOTO 150

110 MOVE 0,0 179, RAW 0, 63:DRAW 0,0

120 96,0:DRAW 96, 63 :MOVE :DRAW 384, 63

130 PROCwinl:CLS:PRINT TAB(1,0);CHR$ (17); "Style Master";CHRS (18)

140 PROChust

150 gdi=15: @ :senl @¥=590A

160 DIM style$ (4),structure$(4),clarity$(4),impact$ (4) :RESTORE 2190

170 FOR s%=0 TO 4:READ style$(s%):NEXT:FOR s%=0 TO 4:READ structure$
(8%) :NEXT

180 FOR s%=0 TO 4:READ clarity$(s%):NEXT:FOR s%=0 TO 4:READ impact$
(8%) : NEXT

190 DIM pv$ (6) :RESTORE 2130:FOR wik=0 TO 6:READ pv§ (ws) :NEXT

200 DIM hv$ (3) :RESTORE 2160:FOR wh=0 TO 3:READ hv§ (ws) :NEXT

210 CALL scrn_to_disk:ENDPROC

220 :

230 DEF PROCnew

240 5 "No :Words¥=0: sen¥=0: fog :ages=0

250 sy%$=0:hard%=0:hv%=0:an%=! =0

260 PROCstatus:ENDPROC

270 :

280 DEF PROCWinl:VDU 28,1,6,14,1:ENDPROC

290 :

300 DEF PROCWin2:VDU 28,17, 6, 62, 1:ENDPROC

310 :

320 DEF PROCWin3:VDU 28, 65, 6, 78, 1:ENDPROC

330 :

340 DEF PROCstatus

350 PROCWin3:CLS:PRINT TAB(7-LEN(doc$)/2,0) ;CHRS (17) ;doc$; CHRS (18)

360 IF doc¥=FALSE THEN ENDPROC

370 PRINT TAB(0,2); "Rating: ";

380 IF age¥<=5 PRINT"Great!"

390 IF age¥>5 AND age%<=10 PRINT"Good"

400 IF age®>10 AND age%<= 14 PRINT"Average"

410 IF age$>14 AND age$<=16 PRINT"Poor"

420 IF age$>16 AND age$<=18 PRINT"Bad"

430 IF age¥>18 AND age¥<=20 PRINT"Awful"

Advanced User Guide

83

440
450

IF age$>20 PRINT"Abysmal"
@¥=520105

PRINT TAB(0,3);"SenLen: ";avlen;
PRINT TAB(3,4);"Fog: ";fog;
PRINT TAB(3,5);"F/K: ";fk;
@%=690A: ENDPROC

DEF PROCBust
x0%=30: yo¥=43

V=0
FOR b%=15 70 0 STEP-1: IF (c% AND 24b%)>0 PROCPlot (x¥,y%)
X¥=x¥+1:NEXT
NEXT
NEXT
ENDPROC

DEF PROCplot (x%, y%)
PLOT 69, x¥+xo%, yot-y¥
ENDPROC

DEF PROCmenu:PROCWin2:CLS
PRINT TAB(16,0);CHRS (17); "Menu of Options";CHRS(18)
VDU 31,10,2,17, 40, 65, 41,18:PRINT"nalyse a New Document”

690 VDU 31,10,3,17, 40, 67, 41,18: PRINT"omment on Current Document”
700 VDU 31,10, 4,17, 40,84, 41,18:PRINT"ips for Good Writing”
710 VDU 31,10,5,17, 40,81, 41,18:PRINT"uit Style Master";
720 REPEAT:g#=GET AND 223:UNTIL g¥=65 OR g¥=67 OR g#=84 OR g¥=81
730 IF g¥=65 PROCanalyse:ENDPROC
740 IF g¥=67 PROCcomment :ENDPROC
750 IF g¥=84 PROCadvice:ENDPROC
760 IF FNsure("Quit Style Master") quit$=TRUE
770 ENDPROC
780 :
790 DEF PROCanalyse
800 PROCwin2:IF doct THEN IF NOT FNsure("Analyse New Document”) THEN
END
810 filename$=FNselect:CALL scrn_from disk:IF ?flag=0 THEN CLS
820 IF filename§="" THEN ENDPROC
830
840 1$="Analysing "+dac! PRINT TAB (23-] mus)/z 1) ;CHRS (17) ;18; CHRS (18)
850 INT TAB(15,3) "Words read:
860 REPEAT: -ord$-!'ﬂx.ad_-n:d(in\) PRINT TAB(28,3);words$
870 PROCcheck_word (words) : senlent=senlent+1
880 IF eost
890 UNTIL EOF#i
900 doct=TRUE:PROCstatus:ENDPROC
910
920 DEF FNsure (m)
930 CLS:PRINT TAB(23-LEN (m$)/2,1);CHRS (17) ;m$; CHRS (18)
940 PRINT TAB(13,3)"Are you sure (Y/N)?'
950 REPEAT:g%=GET AND 223:UNTIL g%=78 or g=89:IF g%=89 THEN =TRUE
960 =FALSE
970
980 DEF PROCopen (£$)
990 =OPENIN £§
1000 :
1010 DEF PROCfog
1020 /wordst)*100

The Amstrad Notepad

DEF PROCnews
0 Y=FALSE:

fog=(avlentperhard) *0.4: spw=sy%/words$
£k=0.39%avlen+11.8%spw-15.59:ages=fog+3.5
ENDPROC

n¥*100
-nnn\/un\-:luu
hv=hv!

DEF PROCscore
%/

DEF FNread_word(ch%)

w§="" :REPEAT: c$=BGET#chs : UNTIL EOF#ch% OR FNisalpha (c¥)

IF EOF#ch% THEN = "" ELSE w§=w$+CHR$ (c%)

REPEAT: c%=BGET#ch$: IF FNisalpha(c¥) w§=w$+CHRS (c%)

UNTIL EOF#ch% OR NOT FNisalpha (c%)

IF c%=44 commas$=commas$+1 ELSEIF FNisend(c%) eos$=TRUE

IF w§<>"" words$=words%+l

1§="":FOR 1%=1 TO LEN (w§) :1$=1$+CHRS (ASC (MIDS (w§,1%,1))OR 32) :NEXT

=1%

DEF FNL 1pha (c¥)

c¥=ct AND 223:IF c%>=65 AND c¥<=90 THEN =TRUE
=FALSE

DEF FNisend(c%)

IF c$=33 OR c¥=46 OR c¥=63 THEN = TRUE

ENDPROC

DEF PROCCheck vord(ws)

IF w§="" ENDPR(

y\-nl-yu-bh-(vs IF y¥>=3
PROCPY (w8) :PROCY (w§) :PROCan (¥8)
ENDPROC

DEF FNsyllables (w$)

IF LEN(w$)<=6 THEN =1

8%=0: £$=FNv (LEFT$ (w$,1)

FOR 1%=2 TO LEN(w§): v\-’Fﬂv(M’IDi (w§,1%,1))
IF v<O>£% f3=vi:st=sh+:

NEXT:=8%/2

DEF FNv(c§) : vs-csnsusc(ca) AND 223)
IF v§="A" OR v§="E" OR V!

OR v§="U" OR v§$="Y" THEN

=FALSE

DEF PROCPV (w§)

IF pvf3=TRUE THENIF RIGHTS(w§,2)="ed" pvf%=FALSE:pv¥=pvi+l:ENDPROC
IF pv£s=TRUE pvf%=FALSE:ENDPROC

£4=FALSE:FOR w&=0 TO 6:IF w$=pv$ (w§) £%=TRUE

NEXT:IF £% pvf$=TRUE

ENDPROC

DEF PROChv (w§)
£%=FALSE:FOR w&=0 TO 3:IF RIGHTS$ (w§, 4)=hv$ (wk) £3=TRUE

Advanced User Guide 8

1620 NEXT:IF £% hvi=hvi+l
1630 ENDFROC

1650 DEF PROCan (w§)
1660 IF RIGHTS(w$,5)="ation" an¥=ant+l
1670 ENDPROC

1690 DBP PROCc:
1700 IF (senlen%< (hlzdp.r\'!))m(.aﬂ.n\).‘nlmt\) OR (commas$=0 AND
1)*20))OR AND

(senlen%< (commas$*4)))) cst=cs¥+l

1710 ENDPROC

1720 :

1730 DEF PROCcomment

1740 IF NOT doc THEN ENDPROC

1750 PROCWin2:CLS:PRINT TAB(16,0);CHRS (17)."Sty1. Criticism";CHRS (18)

1760 PRINT TAB(O,2);CHR$(17); "Style:) (1!) .cyht(numhx(pv))
1770 PRINT TAB(O,3);CHR$(17); ~;CHRS (FN:

(cs))

1780 PRINT TAB(O,4);CHR§(17);"Meaning: ";CHR$(18);clarity$ (FNindex
(an)

1790 PRINT TAB(O,5);CHR$ (17); "Impact: ";CHRS$ (18) ; impact§ (FNindex
(av)) ;

1800 G=GET:ENDPROC

1810 :

1820 DEF FNindex (i)
1830 IF i<=ex% THEN =0

1840 IF i>ex% AND i<=gd% THEN =1

1850 IF i>gd% AND i<=avé THEN =2

1860 IF i>avé AND i<=bd$ THEN =3

1870 =4

1880 :

1890 DEF PROCadvice

1900 PROCwin2:CLS:PRINT TAB(8,0);CHRS (17);

1910 PRINT"Golden Rules for Good Writing™";CHRS (18)’

1920 PRINT"* Use simple words, even in rious’ -z‘iting"
1930 PRINT"* Avoid abstract words and clever jarg

1540 PRINT"* Keep your style alive - avoid passive verbs®
1950 PRINT"* Watch out for, and uncover, all hidden verbs";
1960 G=GET:ENDPROC

1970 :

1980 REM Shakespeare Bit ma

1990 DRTA 41, 67000, £0, 7, GFF00, £0, 518, €10, 60

2000 DATA &2A,&60,&0,&54, 530,40, 8AC, . &0

2010 DATA 5D, ¢1E, £0, S1AB. 4D, €0, £158. A, 60000

2020 DATA 62AB, &5, 66000, 6358, &6, GE000, GEAS, &5, £6000

2030 DATA £3558, &FOF6, £B000, &6AR9, £105, 65000, £5558, £7176, 6B00O
2040 DATA &AAAS, £6165, 65000, £D558, 6106, £B00O, £6000
2050 DATA &DSSC, 68A, GAO0O, GAARC, &68D, & 6000, GDSSC, £10A, £A00D
2060 DATA EAABE, 578D, £4000, EDSEE, &CCF, £8000, &6ARF, £1868, 50
2070 DATA &5517,&C794, &0, 62A17, 6F034, &0, £1EOB, &F872, 60

2080 DATA £205,&FCE1, &0, £202, SFFCO, £8000, £201, £BFCO, £8000
2090 DATA £100, &5F80, £4000, 5100, 52780, £4000, £80, 51880, 52000
2100 DATA &40, £3DFE, £2000, £27, &C301, §E000, £18, &0, £0

ive verb partners
2130 DATA are, be,been, being, is,was,were
2140 :

2150 REM Hidden verb endings

2160 DATA sion,tion,ment,ance

86

The Amstrad Notepad

REM Style

DATA "Direct and friendly"
DATA "Slightly impersonal”
DATA "Rather stuffy"

DATA "Too impersonal”

DATA "Pompous and bureaucratic"
REM Structure

DATA "Well balanced”

DATA "Complex but balanced"
DATA "Complex and unbalanced"
DATA "Overly complex”

DATA "Unacceptably complex”

REM Clarity

DATA "Straightforward"
DATA "Fairly clear"
DATA "Hard to follow"
DATA "Quite obscure"
DATA "Incomprehensible”

REM Impact

DATA "Very punchy"

DATA "Fairly high"

DATA "Quite low key"
DATA "Barely measurable"
DATA "Nonexistant"

DEF FNselect
CALL A%
IF buffer?0 = 0 THBN CLS:=""

R§=nn
FOR J%=0 70 11
IF

THEN «

FOR PASS=0 TO 2 STEP 2
PY=A%

) ELSE J¥=12

Advanced User Guide

2770 NEXT

2780 ENDPROC

2790 :

2800 ON ERROR GOTO 2820

2810 VDU 26:CLS:IF ERR=17 THEN CHAIN "AUTO"

2820 REPORT:PRINT" at line "

2830 PRINT:PRINT"Press [Function] [X] for Notepad Main Menu"
END

2860 DEF PROCassemble2

2910 fclose=sB890

2930 FOR PASS = 0 TO 2 STEP 2
2940 P¥=2%

2960 OPT PASS
0 :

scrn_to_disk

map_scrn_in
&F000
E, 68000

CALL
3010 LD HL,

LD DE,

LD BC, £1000
IR

scrn_from disk

3150 :
3160 LD HL, filename
3170 CALL fopenin
3180 JR C, froml
3190 LD HL, flag
3200 LD (HL),0

RET

3220 :
3230 .froml

3250 LD HL, 8000
3260 LD BC, £1000
3270 CALL finblock
3280 CALL fclose
ma
&l
&F000
&1000

:

EEEE
BRE

T

e
a

map_scrn_out
£

13

3360 (HL) ,

88 The Amstrad Notepad

3370 RET
3390 .map_scrn_in

3410 LD A, (£B003)
3420 LD (state),A
3430 LD A, 67

3440 LD (£B003),A
3450 OUT (&13),A
3460 RET

3480 .map_scrn_out

3500 LD A, (state)
3510 LD (£B003),A
3520 OUT (&13),A
3530 RET

3550 . f£1lq

3560 :

3570 DEFM "STYLE.SCN":DEFB 0
0 @

3590 .flag
0 :

3610 DEFB 0

3630 .state
0 :

3650 DEFB 0

w
&
a
3

NEXT
3680 ENDPROC

TIMEZONE.BAS

World Clock
= i@ e XS 128 2
Use Cur¥er Keus L N?r:n::m

TIMEZONE BAS, goodness, is that the time?

‘World clocks of one kind or another are included with most electronic organisers and
even portables these days. They usually look very pretty, with a nice little picture of a
globe spinning around, but their main purpose in life seems to be letting you check at
a pinch whether your contact in Honolulu is likely to be dragged out of warm bed to
give you a frosty reception if you make that ever-so-vital call right now.

Advanced User Guide 89

Although the Notepad has a Time Manager it only supports six time zones and is
text-only. TIMEZONE.BAS aims to improve on this by providing a graphically
attractive world clock, of the sort that wouldn’t disgrace even the yuppiest pocket
computer. Complete with 24 time zones placed at strategic spots of worldwide power
and influence (like Noumea), you need never again fret over the current time of day
in Anchorage, Alaska.

As well as showing you the current time in all 24 time zones worldwide, the program
displays the time relative to your current home time, and also relative to GMT. This
implies that you can change the home time zone, and indeed you can, although you’ll
have to alter the program to fix it permanently. It’s easy to do, and is fully covered in
the line-by-line explanation of the program.

USING THE PROGRAM
Type in the listing and save it as TIMEZONE.BAS before trying it out. Type:
RUN

and the program will take a few seconds to draw a world map, and there’s even a
little globe that sits under the program title.

On the right of the screen is the status window, showing the current time zone. This
is always London when you first run the program, though it’s easily changed. Below
this is the time in that zone, and initially this will be the same time as held in the
Notepad’s system clock.

Below this is a message telling you the relative difference in hours between the home
time and the current time zone, and when the two are the same (as they will be to
start with) it simply says Home Timezone.

Finally, at the foot of the window is another message telling you the relative
difference in hours between the current time zone and GMT (although it doesn’t take
into account British Summer Time or any other daylight saving time).

On the map a cross hair is centred over the current time zone, which initially is
London. Pressing [Left] and [Right] moves the cross hair west and east respectively,
through each time zone in tum, updating the information in the status window.

If you want to make another time zone the home time zone, press [Return] at any
time - but see the line-by-line explanation for how to change it permanently from
being London each time you start the program.

HOW IT WORKS

30 Points the Basic error handler to Timezone's own error handling
routine at line 2150.

90

The Amstrad Notepad

40

50
80-120
180

190
200-220
230
240-260
270
310

350-370

380

420

430

470

480

520

560
570-580

590-610

Sets up the variables and the display.

Loads previously saved screen file from disk, if it exists.

Draw the world map by continent.

Sets both the start time zone and the home time zone, and the
timer to zero. Should you want to make either start zone
different, set them to any number between 1 and 24 (the zones
themselves are listed on lines 1450 — 1680). You will usually
want to keep these both the same as each other, but you don’t
have to.

Dimensions the arrays.

Draw a box around the screen and display static strings.

Sets xm and ym to display the globe small, and then fixes the
graphics origin at the bottom-left of the world map area.

Read in all the data.

Draws two vertical lines delineating the world map window.
Displays data for the home time zone and calls PROCscankeys
in an infinite loop.

Read the keyboard, checking for [Left], [Right] and [Return].
Call PROCprevzone, PROCnextzone or PROChomezone
respectively.

If at least one second has elapsed since the last time this line was
visited, resets the timer and forces an immediate display of the
clock for the current zone.

Removes the cross-hair and selects the previous zone in the list
(wrapping to the last zone if already at the start of the list).
Places the cross-hair at the new location, and displays the new
zone’s time.

Removes the cross-hair and selects the next zone in the list
(wrapping to the first zone if already at the end of the list).
Places the cross-hair at the new location, and displays the new
zone’s time.

Removes the cross-hair, sets the home time zone equal to the
current time zone, replaces the cross-hair and updates the status
window.

Places the cross-hair on the world map.

Extract the GMT offset for the current zone and convert it to a
string, adding a leading + if positive, and the letters Hrs on the
end.

Calculate the time zone’s offset from the home time zone by
subtracting the home time zone’s GMT offset from the current

Advanced User Guide 91

620-640

650
690-720
730-740

750

760

770

780

790

800
840-890

920950

990-1030

1050-1310

1350-1370
1380-1410
1450-1680

time zone’s GMT offset, and then add a leading + if the result is
positive. If already on the home time zone, just display Home
Timezone.

Print the time zone’s name, its offset from the home time zone
and its offset from GMT.

Calculates and prints the current time in that time zone.

Read the day, hour, minutes and seconds from the system clock.
Calculate the day number by counting day% up from one, until
the current day matches an entry in week$(). Whatever day%
equals at that point is the day number.

Calculates the hour in the current time zone by first adding the
current zone’s GMT offset, and then by subtracting the home
time zone’s GMT offset.

If the hour is less than zero, wraps around to the other end of the
day and decrements the day of the week, wrapping to the last
day of the week if necessary.

If the hour is greater than 24, wraps around to the other end of
the day and increments the day of the week, wrapping to the first
day of the week if necessary.

Converts the new day number to a name.

Constructs the string that holds the time for the current zone
from the day of the week and the time for that zone.

Prints the completed string.

Construct a time string in hh:mm:ss format from the current
values of hour%, mins%, secs% and returns it.

Exclusive-OR a cross-hair at the current city coordinates using
PLOT 96. One call displays the cross-hair, the next (if at the
same coordinates) removes it.

Display a discrete land mass by first reading in the number of
lines to plot (max%) and plotting the start coordinates, followed
by drawing a line to each new coordinate pair read until the
count in p% reaches max%. The multipliers xm and ym are used,
allowing the maps to be scaled as required.

The main continent procedures. Some of these contain more than
one call to PROCisland, where there are several land masses to
be drawn. Occasionally single points are plotted to represent
important islands (Honolulu is plotted as part of PROCamerica).
Draw the three land masses visible on the globe.

Draw the outline of the globe as a polygon with 32 comners.

The time zone data held listed as follows: name, offset in hours

92

The Amstrad Notepad

1700
1720-2170
2190

2210

2220

2250-3170

2250

2260-2300
2320-2330

2390

2400-2430
2440
2450-2460
2470
2480-2500
2510
2550-2560
2570-2600

2640-2670
2680-2730

from GMT, X coordinate of the named location, Y coordinate of
the named location.

Lists the days of the week.

List the land mass data for both the world map and the globe.
Points the Basic error handler to a full error report in the event
of a further error occurring while attempting to run AUTO. This
is in case AUTO isn’t present on your Notepad.

Attempts to run the menu program AUTO if the error was
generated by pressing the [Stop] key.

If the error was caused by something else, or if AUTO isn’t on
your Notepad, a full error report is displayed.

After the error report the Notepad will be left in BBC Basic, so
this message is displayed to remind users of how to return to the
Notepad main menu.

Assemble the screen saver/loader, which saves a copy of the
screen after everything is drawn the first time, and loads it in
each time thereafter.

Start of that the screen whicl
saves a copy of the screen after everything is drawn the first
time, and loads it in each time thereafter.

Define the five NC100 jump block routines to be used.

Begin the two-pass assembly and set P% (the assembly
destination pointer) to the start of the previously dimensioned
Z%.

Pages the 16K of RAM with the video memory in at address
&C000.

Copy the contents of video RAM down to &8000.

Puts back the video RAM.

Open a file for saving the screen data.

Returns if unable to open the file.

Save &1000 bytes from &8000 to the file.

Closes the file and exits.

Open a file for reading.

If unable to open the file, set the contents of flag to zero and
returns,

Read the &1000 bytes to location &8000 then close the file.
Map the video RAM 16K block into &C000, copy the &1000

bytes from location &8000 up to &F000 and then put back the
screen RAM.

Advanced User Guide 93

2740-2760

2800-2810

2820-2850
2890-2900

2960
3000
3040
3090-3120

3140-3170

To indicate successful loading, set the contents of flag to 1 then
retumn.
Save the current status of the bank switcher for block 4
(&C000-&FFFF).

Map the video RAM into main RAM then returns.

Restore the state of the bank 4 bank switcher and its copy at
&B003.

The file name TIMEZONE.SCN.

The flag to indicate successful file loading.

Temporary storage of the state of the bank switcher.

A function to allocate memory for a string and store the string in
that memory.

A function to allocate space for a byte of data and store the data
in that location.

Functions and procedures

PROCsetup
PROCselect

PROCscankeys
PROCprevzone

PROCnextzone

PROChomezone
PROC

Dimensions the arrays, draws the screen boxes, the globe and
prints static text.

Displays data for the home time zone and calls PROCscankeys
in an infinite loop.

Reads the keyboard, checking for [Left], [Right] and [Return].
Selects the next time zone west, wrapping round to the east of
the map in necessary.

Selects the next time zone east, wrapping round to the west of
the map if necessary.

Makes the current time zone the home timezone.

Displays the hair and updates the status window for the

PROCzonetime

PROCcrosshair
PROCisland
PROCamerica
PROCafrica
PROCeurope
PROCgreenland
PROCaustralia
PROCglobe

current zone.

Polls the system clock and displays it at the top right adjusted
for the current zone.

Displays or removes a cross-hair at the current zone coordinates.
Draws an isolated land mass on the main world map.

Draws the land mass that makes up North and South America.
Draws the land masses that make up Africa.

Draws the land masses that make up Europe.

Draws the land mass that makes up Greenland.

Draws the land masses that make up the Antipodes.

Draws a circle and the land masses that make up the visible face
of the globe.

94 The Amstrad Notepad

FNnewtime Returns the adjusted time formatted to hh:mm:ss.

Main variables and arrays

city$Q Holds the name of each time zone’s main city or island.

gmt%() Holds the relative offset of each time zone from GMT.

xpos%() Holds the cross-hair X coordinate of each time zone.

ypos%() Holds the cross-hair Y coordinate of each time zone.

week$() Holds the names of each day of the week.

xm X coordinate multiplier for controlling width of graphics objects.

ym Y coordinate multiplier for controlling height of graphics
objects.

zone% Current time zone.

home% Home time zone.

zo$ Time zone offset from home time-zone.

gmt$ Time zone offset from Greenwich Mean Time.

day$ The current day of the week in the home time zone.

hour% ‘The current hour of the day in the home time zone.

mins% The current minute.

secs% The current second.

h$ ‘The hour in the current time zone padded to two digits with
leading zero.

m$ The current minute padded to two digits with leading zero.

s$ The current seconds padded to two digits with leading zero.

time$ The time in the current zone formatted to hh:mm:ss.

The program

REM World Time Zones

ON ERROR GOTO 2190

DIM 2% &80:VDU 26:CLS

PROCassenble:CALL scrn_from disk:IF ?flag=0 THEN CLS
PROCsetup

IF ?flag=l THEN GOTO 140

PROCamerica

PROCgreenland

PROCafrica

PROCeurcpe

PROCaustralia

CALL scrn_to_disk

PROCselact

END

DEF PROCsetup
zone%=12:home¥=12: TIME=0

Advanced User Guide 95

450
460
470
480
490
500
510
520
530
540
550
560
570

DIM city$(24),gmt%(24),xpost(24),yposs (24) ,weeks (7)
MOVE 0,0:DRAW 479, 0:DRAW 479, 63:DRAW 0, 63:DRAW u.n
PRINT TAB(4,1);CHRS(17); "World Time Zone
PRINT TAB(4,6);CHRS (17) ; "Use Cursor Keys ~cnt(1n) vnv 28, 56,6, 7c 1
xm=0.8:ym=0.8:VDU 29,58;14; :PROCglobe:xmel.9: ym=1.4:VDU 29,1
RESTORE 1450:FOR zi=1 T0 24

READ city$(z%), e, xpon(n) ypoxk(zt)

NEXT:FOR d$=1 TO 7:READ week$ (d

MOVE 0,0:DRAW 182, 0:DRAW 182, u mu\w o,st.muu 0,0
ENDPROC

DEF PROCselect
:UNTIL FALSE

ENDPROC

DEF PROCscankeys

1%=INKEY(0) :IF 1%=242 PROCprevzone:ENDPROC
IF 1%=243 PROCnextzone:ENDPROC

IF 1%=13 SOUND 1,1,100,1:PROChomezone: ENDPROC
IF TIME>100 THEN TIME=0:PROCzonetime

ENDPROC

DEF PROCprevzone
PROCcrosshair:zonet=zone¥-1:IF zone¥=0 zonet=24
PROCshowzone

ENDPROC

DEF PROCnextzone
1F zonet=1

PROCshowzone
ENDPROC

DEF PROChomezone

ENDPROC

DEF PROCshowzone
CLS:PROCcrosshair
IF gmt$(zone%)>0 gmt§="+"+STR$ (gmt% (zone%)) ELSE

gmt$=STRS (gmt % (zone%))

580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760

770 IF

gmt§="GMT "+gmt$+" Hrs"

no\-q-u(unu)-qnu (homet)

IF tzo%>0 $ (tzo%) ELSE (tzo%)

IF £208<>0 tzof="Home Time "ttzo§+" Hrs" ELSE tzof="Home Timezone"
PRINT TAB(11-LEN(city§(zones))/2,0);CHR$ (17); ci:yt(xano\),-cnt(u)
PRINT TAB(11-LEN(tzo$)/2,3);tzo8

PRINT TAB(11-LEN (gmt$)/2,5):gmt$;

PROCzonetime

ENDPROC

DEF PROCzonetime
day$=LEFT§ (TIMES, 3)
hour#=VAL (MID$ (TIMES, 17,2))
mins¥=VAL (MID$ (TIMES, 20,2))
secs¥=VAL (MID$ (TIMES, 23,2))
day%=0:REPEAT: day¥=day%+1
UNTIL week$ (day%)=day$
gmt % (zones)
IF hourt<0 hourt=24+hourt:days=days-1:IF uy\=o dayt=7
dayt=8 day%=1

day$=weeks$ (day$)
time$=day$+CHRS (32) +FNnewtime

PRINT TAB(11-LEN (time$)/2,1);time$;

ENDPROC

DEF FNnewtime

h$§=STR§ (hours) :m$=STR$ (mins$) : s§=STR$ (secss)
h§

'h§=STRINGS (2-] uu(h&),"o")
m§=STRINGS (2-LEN (m$) , "0") +m$
8$=STRINGS (2-LEN (s§) , "0") +8§
time$=h§+": "+mf+": "+8§
=time$

DEF PROCcrosshair

MOVE xposs (zonet) *xm, 0

PLOT 6,xpost (zone$)*xm, 48%ym
MOVE 0, ypost (zone%) *ym

PLOT 6, 96*xm, ypos$ (zones) *ym
ENDPROC

DEF PROCisland

READ max%

READ x%,y%:MOVE x%*xm, y$*ym
FOR pt=1" T0 max%

READ x%,y%:DRAW x%*xm, y$*ym
NEXT: ENDPROC

DEF PROCamerica
RESTORE 1720:PROCisland
PLOT 69,1*xm, 25%ym
PLOT 69, 2*xm, 24*ym
ENDPROC

DEF PROCafrica

RESTORE 1780:PROCisland

RESTORE 1830:PROCisland

PLOT 69, 40%xm, 20%ym
PROC

DEF PROCeurope

RESTORE 1860:PROCisland
RESTORE 2000:PROCisland
RESTORE 2100:PROCisland
ENDPROC

DEF PROCgreenland
RESTORE 1960:PROCisland
ENDPROC

DEF PROCaustralia
RESTORE 2030:PROCisland
RESTORE 2070:PROCisland
PLOT 69, 95%xm, 11%ym
ENDPROC

DEF PROCglobe

IF ?flag=l THEN ENDPROC
RESTORE 2130:PROCisland
RESTORE 2140:PROCisland
RESTORE 2150:PROCisland

Advanced User Guide

97

1380 MOVE ((SIN(0)*22)+19)*xm, ((COS (0)*20)+22) *ym
1390 FOR a=0 TO 2*PI STEP 2*PI/32

1400 DRAW ((SIN(a)*22)+19)*xm, ((COS (a)*20)+22) *ym
1410 NEXT

1450 DATA
1460 DATA
1470 DATA
1480 DATA
1490 DATA
1500 DATA Chicago, -6, 20,32
1510 DATA New York,-5,25,30
1520 DATA Caracas, -4,28,20

1530 DATA Rio de Janeiro,-3,35,12
1540 DATA Recife,-2,37,16
1550 DATA Azores,-1,40,29
1560 DATA London, 0, 48,34
1570 DATA Paris,1,49,32
1580 DATA Cairo,2,58,27
ddah,

1620 DATA Dhaka, 6,75, 26

1630 DATA Bangkok,7,78,23

1640 DATA Hong Kong, 8,83,26

1650 DATA Tokyo, 9, 91,30

1660 DATA Sydney,10,93,7

1670 DATA Noumea,1l,95,11

1680 DATA Wellington,12,95,4

1690 REM Week Days

1700 DATA Mon, Tue, Wed, Thu, Fri, Sat, Sun

1710 REM North and South America

1720 DATA 43

1730 DATA 0,39,5,40,7,39,9, 41,15, 39,23, 40,20, 36, 24, 33, 26, 35, 25, 37,29,
35,31,33

1740 DATA 29,31,27,31,23,28,24,26,22,27,20,27,20,24,24,24,26,21,33,19,

17,

1750 DATA 37,17,38,14,37,12,33,10,32,7,30,6,28,5,28,2,26,2,25,6,27,12,

23,17

1760 DATA 24,20,23,23,20,22,18,21,15,24,11,29,10,34,3,37,0,34

1770 REM Africa

1780 DATA 23

1790 DATA 51,29,45,28,45,27,44,27,43,21,45,19,50,20,51,19,51,17,52,15,
13

1800 DATA 54,9,54,7,58,9,60,15,59,17, 63,21, 60,21, 58,27, 53,27, 54, 28, 53,

26,51,27

1810 DATA 51,29

1820 REM Madagascar

1830 DATA 5

1840 DATA 62,11, 63,11, 64,14, 64,15,62,13, 62,11

1850 REM Eur

1860 DATA 85

1870 DATA 45,31,45,29,47,29,48,31,50,31,53,28,53,29,51,31,55,31, 56,28,

56,29
1880 DATA 57,30,57,31,59,31, 60,29,57,29,57,28, 58,28, 58, 27, 62, 23, 65, 24,
66,25
1890 DATA 63,27, 69,26,71,20,73,21,73,22,75,25,81,21, 82, 22, 82, 23, 80, 25,
83,26

98 The Amstrad Notepad

1900 DATA 8S5,27,84,30,85,31,87, 28,88, 29,87, 31, 88, 32, 90, 32, 90, 34, 89, 35,
.36
1910 DATA 92,36, 95,37, 96, 35, 95, 33, 96, 32, 96, 38, 91, 39, 89, 38, 81, 39, 83, 40,
81,42

1920 DATA 75,39,75,37,73,39, 66,39, 60,37, 58, 38, 60, 38, 60,39,57,41,53, 40,

1930 DATA 49,37,49,35, 51, 36, 52, 34, 53, 36, 52,37, 55, 39, 56, 38, 54,37, 55, 36,
57,36

1940 DATA 54,35,53,33,52,33,51,35,50,35,50,34,47,32,47,31,45,31

1950 REM Greenland

1960 DATA 18

1970 DATA 32,36,33,39,30,41,29,40,2

41,30,43,34,43,38,45,37,44,41,45,

40,44
1980 DATA 44,44,42,42,43,41,40,40,42,39,37,38,34,36,32,36
1990 REM Britain
2000 DATA 3
2010 DATA 46,33,48,34,47,36,46,33
2020 REM Australia
2030 DATA 23
2040 DATA 84,7,83,8,83,9,82,11,84,12,85,14, 86,13,87,15,89,14, 88,13, 90,
12,91,13
2050 DATA 91,14,92,12,94,10,94,8,92,6,90,6,89,
2060 REM New Zealand
2070 DATA 4
2080 DATA 96,7,95,4,92,2,92,1,96,4
pan

,88,8,87,9,86,9,85,8,84,7

2110 DATA 91,31,91,30,89,29,89,28,92,30,92,31,91,31

2120 REM Globe

2130 DATA 5,4,8,6,15,8,16,5,21,5,23,0,29

2140 DATA 3,6,36,11,36,15,37,16, 40

2150 DATA 28,29,37,24,31,25,29,28,31,30,31, 32,30, 30,29, 28, 29, 24, 28, 20,

5,19

2160 DATA 20,21,17,25,16,26,15,27,12,26,9,26,5,29,6,32,9,35,16, 35,20, 36,
24, 3.

2170 DATA 23,33,25,32,28,35,25,36,28,35,30,38,28
2180 :

2190 ON ERROR GOTO 2210

2200 VDU 26:CLS:IF ERR=17 THEN CHAIN "AUTO"

2210 REPORT:PRINT" at line ";ERL

2220 PRINT:PRINT"Press [Function][X] for Notepad Main Menu"

2270 fopenin=sBBA2

2280 foutblock=&BSAB

2290 finblock=&B896

2300 fclose=&B890

2310 :

2320 FOR PASS = 0 TO 2 STEP 2
2330 PY=2%

2340 [

2350 OPT PASS

2390 CALL map_scrn_in
2400 LD HL, 6F000
2410 LD DE, 68000

Advanced User Guide

2420 LD BC, 1000
IR

2440 CALL map_scrn_out
2450 LD HL, filename

2530 .scrn_from_disk

2550 LD HL, filename
2560 CALL fopenin
2570 JR C, froml
2580 LD HL, flag
2590 LD (HL),0
2600 RET

2610 :

2620 . froml

2640 LD HL, £8000

.map_scrn_in

1D A, (&B003)
LD (state),A
1D A, 67

LD (&B003),A
2840 OUT (s13),A
2850 RET

.map_scrn_out

2890 LD A, (state)

2900 LD (&B003),A

2910 OUT (&13),A
T

2930 :
2940 .filename
0 :

2960 DEFM "TIMEZONE.SCN":DEFB 0
2970 :
2980 .flag
2990 :
3000 DEFB 0
o :

100 The Amstrad Notepad

3020 .state

3070 ENDPROC

ZAP.BAS
Z80 disassembler

§ Fowe

198 520

838
&

ZAP BAS, peek under your Notepad's bonnet.

An essential tool for every assembly language programmer is a disassembler. With
one you can check that programs you have written have assembled correctly or get a
feel for how other programs work. In particular, if you wish to examine code in the
Notepad’s ROMs in order to, perhaps, call undocumented routines directly yourself
(only recommended if you make careful checks to ensure that a new version of the
firmware has not changed or moved such a routine), you can adapt the screen saving
functions of programs such as COOKIE.BAS or TIMEZONE.BAS to page a selected
ROM in (rather than the video RAM) and save a copy to disk ready for disassembly.

Note that if you do disassemble parts of the ROMs you may only use the information
you obtain to call the routines in the ROMs. You MAY NOT copy and/or modify any
of the routines and incorporate them in your own programs as they are protected by
copyright.

ZAP.BAS was written to be as easy to understand as possible and therefore a brute
force method was used for its data storage. Rather than storing the main assembler
mnemonics such as ADC or LD, and then doing some complicated calculations to
determine the various combinations such as ADC A or ADC B and LD HL,A or LD
(DE),&1234, every single possible combination is stored on its own data line.

This means that the program only has to check whether the current opcode sequence
is one, two, three or four bytes, noting the opcodes against all the sequences stored
next to the accompanying mnemonics.

Advanced User Guide 101

USING THE PROGRAM
Type in the listing and save it as ZAP.BAS before trying it out, then type:
RUN

The screen will then clear and you will see Please wait while the program reads in all
its data. This takes about eight seconds, after which the familiar File Selector appears,
and you should now choose a file you wish to disassemble. If you wish you can
choose non-machine code files too, just to test the program, but the disassembly will
be completely nonsensical.

Once a file has been selected you are then asked for the ORG address. This should be
the exact address to which the first byte of the code you are disassembling was
originally assembled. For example, if you were to disassemble ROM 5 which is the
BBC Basic Rom, you should give an ORG address of &C000, which is the area of
memory to which BBC Basic is paged in when you call it up.

Incidentally, the reason Zap reads its input from a file is because the program is
rather large and, being in BBC Basic, it would not be easy to allow it to disassemble
from ANY RAM address in ANY RAM or ROM. Therefore, it is left up to you to
save any areas of memory you wish to assemble out to disk first.

Of course, the program could have been written completely in assembler itself and it
would then have been blindingly fast. However, the Basic version is more than
sufficient for examining code segments.

HOW IT WORKS

30-70 Declare the main variables.

80-150 Dimension the arrays.

170 Assembles the machine code for the File selector.

180 Reads the mnemonic and opcode data.

190 Calls the File selector.

200 Asks for the ORG address

210 Opens the selected file for reading.

250 Gets the first opcode.

260 Is it a one-byte opcode? If yes, GOTO done.

270 Gets the second opcode

280-300 Is it one of the two-byte family of opcodes? If yes, GOTO done.

310 Gets the third opcode

320-330 Is it one of the three-byte family of opcodes? If yes, GOTO
done.

340 Gets the fourth opcode

102 The Amstrad Notepad

350-370 Is it one of the four-byte family of opcodes? If yes, GOTO done.

380 If we got here then we found an unrecognised opcode. So it is
either data or an undocumented opcode.

390 Continues until the end of the file.

400410 Finished so close the file and exit.

430470 Is it a one-byte opcode? If yes, print the mnemonic.

490-530 Is it a type-one two-byte opcode? If yes, print the mnemonic.

550-590 Is it a type-two two-byte opcode? If yes, print the mnemonic.

610-670 Is it a type-three two-byte opcode? If yes, print the mnemonic.

690-730 Is it a type-one three-byte opcode? If yes, print the mnemonic.

750-790 Is it a type-two three-byte opcode? If yes, print the mnemonic.

810-850 Is it a type-one four-byte opcode? If yes, print the mnemonic.

870-910 Is it a type-two four-byte opcode? If yes, print the mnemonic.

930970 Is it a type-three four-byte opcode? If yes, print the mnemonic.

990-1100 Print a given mnemonic, replacing any asterisks in the original
with the passed values which are the actual opcodes.

1120-1320 Print the values of opcodes 1, 2, 3 and 4 in hexadecimal.

1340-1440 Read the opcodes and mnemonic data into the arrays.

1460-1490 Read the hexadecimal data, preface each with an & to make it
useable by the EVAL statement then return its value.

1510-1580 Call the firmware File selector and return the name of any file
selected.

1600-1830 Assemble the File selector calling code.

1890-3900 Single-byte opcode and mnemonic data.

3940-7130 Type-one two-byte opcode and mnemonic data.

7170-7340 Type-two two-byte opcode and mnemonic data.

7380-7430 Type-three two-byte opcode and mnemonic data.

7470-7720 Type-one three-byte opcode and mnemonic data.

7760-8230 Type-two three-byte opcode and mnemonic data.

8270-8280 Type-one four-byte opcode and mnemonic data.

8320-8430 Type-two four-byte opcode and mnemonic data.

8470-9080 Type-three four-byte opcode and mnemonic data.

Functions and procedures

PROCassemble Assembles the File selector calling code.

PROCread_data Reads the opcode and mnemonic data into the arrays.

PROC;j Prints the first opcode value in hexadecimal.

Advanced User Guide

PROCk Prints the second opcode value in hexadecimal.
PROCI Prints the third opcode value in hexadecimal.
PROCm Prints the fourth opcode value in hexadecimal.
PROCmnemon Prints the mnemonic for the given opcode.
FNchk_one Checks for a one-byte opcode.

FNchk_twoa Checks for a type-one two-byte opcode.
FNchk_twob Checks for a type-two two-byte opcode.
FNchk_twoc Checks for a type-three two-byte opcode.

FNchk_threea Checks for a type-one three-byte opcode.
FNchk_threeb Checks for a type-two three-byte opcode.
FNchk_foura Checks for a type-one four-byte opcode.

FNchk_fourb Checks for a type-two four-byte opcode.
FNchk_fourc Checks for a type-three four-byte opcode.
FNread Reads the hexadecimal text data and converts to a number.
FNselect Prompits the user for a file using the File selector.
Main variables and arrays

start% ‘The ORG address of the code being disassembled.
one% Number of one-byte opcodes.

twoa% Number of type-one two-byte opcodes.

twob% Number of type-two two-byte opcodes.

twoc% Number of type-three two-byte opcodes.

threea% Number of type-one three-byte opcodes.
threeb% Number of type-two three-byte opcodes.

foura% Number of type-one four-byte opcodes.

fourb% Number of type-two four-byte opcodes.

fourc% Number of type-three four-byte opcodes.

A% Space for the File selector machine code.

al% One-byte opcode array.

b1% Type-one two-byte opcode array.

b2% Type-two two-byte opcode array.

b3% Type-three two-byte opcode array.

cl% Type-one three-byte opcode array.

2% Type-two three-byte opcode array.

d1% Type-one four-byte opcode array.

2% Type-two four-byte opcode array.

d3% Type-three four-byte opcode array.

104

The Amstrad Notepad

4%
al$
b1$
b2$
38
cl$
c28
d1s

138
d48
file$
handle
chk%

oldstart%

Type-four four-byte opcode array.
One-byte mnemonic array.

Type-one two-byte mnemonic array.
Type-two two-byte mnemonic array.
Type-three two-byte mnemonic array.
Type-one three-byte mnemonic array.
Type-two three-byte mnemonic array.
Type-one four-byte mnemonic array.
Type-two four-byte mnemonic array.
Type-three four-byte mnemonic array.
Type-four four-byte mnemonic array.
The file name returned by the File selector.
File handle of the opened file.

This is set and returned by the chk_... functions if one of them is
successful in matching with the current opcode.

The previous value of start% before the current opcode was
tested. This allows start% to be incremented as each new byte is
read in, while oldstart% retains the correct address of the start of
the current opcode.

Opcode one. (Also used as a temporary loop counter during
initialisation).

Opcode two (if there is one).

Opcode three (if there is one).

Opcode four (if there is one).

‘Temporary loop counters.

If set, PROCmnemonic knows it need not search for any
asterisks to replace with values, as there are none.

The position of the first asterisk if there are two of them in a
mnemonic.

The position of the asterisk if there is just one in a mnemonic.
Left and right halves of a mnemonic having the asterisk stripped
from it.

The mnemonic, both before and after asterisk replacement.

A string holding a four-character number representing the value
of oldstart%, the current offset from the ORG address.

The two-byte hex string printed by PROCs j, k, | and m.

Temporary string created to read the hexadecimal data into the
arrays via an EVAL command.

Advanced User Guide 105

buffer
found

loop

Holds the file name obtained by the file selector in the machine
code section of the program (part of the A% array).

Label in the machine code section from which point a file has
been selected.

Label in the machine codes section where a loop transfers the
file name to a known location addressable from Basic.

The program

10
20
30
40
50
60
70
80
90
100
110
120
130
140

e-on-nn Ewob¥=18: twock=6
threea¥=26: threab=d

foura¥=2: fourb¥=12: fourck=62

DIM A% 40

DIM al% ones,al§(onet)

DIM bl% twoa¥,b2% twob$,b3% twoch,bl§ (twoas),b2§ (twobd),b3$ (twock)
DIM blat twoat

DIM cl% threea¥,c2% threebt,cl$ (threea%),c2$ (threebt)

DIM c2a% threebd

DIM d1% foura%,d2% fourb%,d3% fource,dl$(foura$),d2$(fourbs),

dsl (fourch)

150

DIM dla% foura%,d2a% fourb%, d3a% fourch, d3bs fourch

160 :

170
180
190
200
enter
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450

PROCassenmble

PROCread_data
fileg=Flselect:IF file§="" THE]
I§m"0":PRINT "Dii nne;£iles. PRINT:INPUT "Please
ORG address: "I§:IF LEN(I$)>0 THEN start¥=EVAL I§
PRINT:handle=OPENIN (file§)

REPEAT

Chki=0:oldstart¥=starts

JY=BGET #handle:start¥=start¥+l

IF FNchk_one THEN GOTO 390

K4=BGET #handle:start¥=start¥+1
0

IF FNchk_twoc THEN GOTO 390
L%=BGET #handle:start¥=start¥+l
IF FNchk threea THEN GOTO 390

DEF FNchk_one
FOR X%=0 TO one%-1
IF J%¥=al%?X% THEN PROC):PRINT SPC(9);

106 The Amstrad Notepad

PROCmnemon (a1$ (X$),0,0,0,2) :VDU 27, J%:chk¥=1
460 NEXT

470 =chks

chk_twoa
500 FOR X%=0 TO twoa¥-1
510 IF J%=bl%?X% AND K¥=bla$?X% THEN PROC:PROCK:PRINT SEC (6);:

550 DEF FNchk_twob
560 FOR X%=0 TO twob%-1
570 IF THEN PROC3)

twoc
IF K$>129 THEN offset=- (K¥-129)
<0 THEN

640 FOR X%=0 TO twoct-1
650 IF J%=b3%?X% THEN PROCY:PROCK:PRINT SEC(6);

(b38 (X%) , 1, ,0,4) VDU 27, 3%, 27, K8 : chkb=1
660 NEXT
670 =chk%

690 DEF FNchk_threea
'lno FOR X4%=0 TO threeas-1
10 IF Jé=cl¥?X% THEN PROCJ:PROCK:PROCL:PRINT SEC(3);
noc.nmn(cu(xﬁ) 1,KA4L4*6100,0, 4) :VDU 27,J%, 27, K8, 27, L¥: chk¥=1
0 NEXT

750 DEF FNchk_threeb
760 FOR X%=0 TO threeb%-1
770 IF J%=c2%?X% AND K¥=c2a%?X$% THEN PROCJ:PROCK:PROC.
SPC(3) ; :PROCmnemon (c2§ (X%) ,1,L%,0,2) :VDU 27,J%,27,K8, 27, Ls: qhk\-l
780 NEXT

790 =chks

800 :

810 DEF FNchk_foura

820 FOR X#=0 TO foura%-1

830 IF J=d1%?X% AND K¥=dla%?X$ THEN PROCJ:PROCk:PROCL:PROCM:
PROCmnamon (d1§ (X$) , 2, L%, M8, 2) :VDU 27,J%, 27,K%, 27, L%, 27, M¥: chk#:

840 NEXT

850 =chk%

0 :
870 DEF FNchk_fourb

880 FOR X%=0 TO fourb%-1

890 IF J$=d24?X% AND K¥=d2a%?X% THEN PROC3:PROCK:PROCI:PROCM:
noom-m(dzt(x\) 1,L84M¥*£100,0,4) :VDU 27,J%,27,K%, 27, L%, 27, Mé: chk®

sxc -qh.k!
920 :
930 DEF FNchk_fourc
940 FOR Xm0 TO fourc$-1
950 IF J¥=d3%?7X% AND K%=d3a¥?X% AND M%=d3b4?X% THEN PROC):PROCK:PROCL:
PROCm: PROCmnemon (438 (X%) , 1,L%, 0,2) :VDU 27, 3%, 27,K%, 27, L%, 27, M$: chk¥=1
960 NEXT

Advanced User Guide 107

970 mchkd
980 :

990 DEF PROCmnemon (text$, flagt, vally, val2t. sizet)
1000 IF flagé=0 THEN GOTO 10!

1010 posl®$=0:pos2%=0

1020 FOR C%=1 TO LEN (text§)

1030 IF MIDS (text$,C%,1)="*" THEN posl¥=pos2%:pos2%=C%

1040 NEXT
1050 strl$=STR§ (valls): tzll-'i'+STRIIG§(li:t\-m(ltzlﬂ),"0")4-ltr1'
1060 (val2s) ") +str2$

1070 text$=LEFTS (text$, pos2s- 1)u:nsmxms (text$, LEN (text$) -pos2t)
1080 IF flag¥=2 THENtext$=LEFTS (text$,posl%-1)+str2§+RIGHTS
(text$, LEN (taxt$) -posls)

1090 PRINT text$;:VDU 31,40,VROS

1100 ENDPROC

1110 :

1120 DEF PROC)

1130 B§=STR$ « (88), "0")+B§

1140 PRINT:PRINT ;B$;SEC(2):

1150 Z$=STR§ (J%):IF J¥<16 THEN Z§="0"+Z§

1160 vnrm- zo" =

DEF PROCK
1200 2§=STR§ (K%):IF K¥<16 THEN Z§="0"+2§
1210 PRINT ;28;"
1220 ENDPROC
1230 :
1240 DEF PROCL
1250 Z4=STR$ (L%):IF L<16 THEN Z§="0"+2$
1260 PRINT ;2§;" ";
1270 ENDPROC
1280 :
1290 DEF PROCm
1300 Z§=STRS (ll\) rp MR<16 THEN Z§="0"+2%
1310 PRINT ;Z§;"
1320 ENDPROC
1330 :
1340 DEF PROCread data
1350 POR J%=0 TO
1360 FOR J¥=0 TO

1390 FOR J¥=0 70 :C18?7J%=FNread:READ cl§ (J%) :NEXT

1400 FOR J%=0 TO 3

©2§ (J%) =

1410 FOR J4=0 70 fourat-1:diN2Jv=iiread:dlat?J¥=Fliread:READ d1§(J%) :NEXT
1420 FOR J%=0 TO fourb% READ d2§ (J%) :NEXT

1430 FOR J¥=0 TO :mm:t—x
READ d3§ (J%) :NEXT

1440 ENDPROC

1450 :

1460 DEF FiNread

1470 READ R§

1480 R§="&"+R$

1490 =EVAL R§

1500 :

1510 DEF FNselect

1520 CALL A%

1530 IF buffer?0 = O THEN CLS:=""

The Amstrad Notepad

R§=nn
FOR J%=0 70 11

F r?J% THEN R$ ¢ r
NEXT

=R§

DEF PROCassemble

FOR PASS=0 T0 2 STEP 2
PY=A%

OPT PASS
CALL &B8C3
LD DE,buffer
JR C, found

REM Instruction codes and mnemonics
REM Single byte

DATA 00, NOP
DATA 02, "LD (BC),A"
DATA 03,INC BC
DATA 04,INC B

DATA 05,DEC B

DATA 07,RLCA

DATA 08, "EX AF,AF"’
DATA 09, "ADD HL,BC"
DATA OA,"LD A, (BC)"
DATA 0B,DEC BC
DATA 0C,INC C

DATA 0D,DEC C

DATA OF, RRCA

DATA 12, "LD (DE),A"
DATA 13,INC DE
DATA 14,INC D

DATA 15,DEC D

DATA 17,RLA

DATA 19, "ADD HL,DE"
DATA 1A, "LD A, (DE)"
DATA 1B,DEC DE
DATA 1C,INC E

DATA 1D, DEC E

DATA 1F,RRA

DATA 23,INC HL

) ELSE J%=12

Advanced User Guide

109

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

24,INC H
25,DEC B

Cowd HmNOOW

A
A
B,
B
B
B
44,"1D B,
B
B
B
c.
c
c

110

The Amstrad Notepad

2880 DATA 79,"LD A,C"

, "ADC A,E"
3070 DATA 8C, "ADC A,E"
3080 DATA 8D, "ADC A,L"
3090 DATA 8E,"ADC A, (HL)"
3100 DATA 8F, "ADC A,A"
3110 DATA 90,SUB B
3120 DATA 91,SUB C
3130 DATA 92,SUB D
3140 DATA 93,SUB E
3150 DATA 94,SUB H
3160 DATA 95,SUB L

3190 DATA 98, "SBC A,B"
3200 DATA 99, "SBC A,C"

Advanced User Guide

m

EREEEEH
g

PormNOQWY

H

H

5

g

>

]
CRERRBREEREEEED

E

g
B
DEwEE

rarununwrﬂrnuvnm

E00080000399838 9 N N NN

w
]
a
3
g
BEER
POHEBEEE
5
=
=

b
8
8

112

The Amstrad Notepad

ocococooooogg

eR3aG2GRES

g

rn.un".al"llﬂn!.at‘ﬂﬂﬂﬂl

B

HREABPORSAGALREERRERES

PoHmHOOE N~
B

BBRRRAARRRRRRRRRRARRRERERARBRRRERRRS

8080000BB0RRRRRS
R R EEEEEE R S HE R4
g E

SHEBABPOBRNEAY

vavnnvnmnnrmnunwrarmnvnw

. "BIT 0,B"

CEEEEEEEEEEEEELL

Advanced User Guide

13

4540 DATA CB, 44, "BIT 0,B"
4550 DATA a4 45, "BIT 0,L"
CB, 46, "BIT 0, (HL)"
4570 DATA CB, 47, "BIT O,A"
4580 DATA CB, 48, "BIT 1,B"
4590 DATA CB, 49, "BIT 1,C"
4600 DATA CB, 4A, "BIT 1,D"
4610 DATA CB, 4B, "BIT 1,E"
1,8"
1,1
1, (8EL)"
1,a"

WP - HENOOEP-EENOOW M- HENO
TR NN ANINNgRANY

B

u
L
(
An
c
D
B

5
Y
TEhEne
d

g
FEETTTH

5120 DATA CB, 7B, "BIT 7, (HL)"
5130 DATA CB,7F, "BIT 7,A"

14

The Amstrad Notepad

5140 DATA CB, 80, "RES 0,B"
5150 DATA CB,81,"RES 0,C"
5160 DATA CB, 82, "RES 0,D"
5170 DATA CB,83,"RES 0,E"
5180 DATA CB,84,"RES 0,H"
5190 DATA CB,85,"RES 0,L"
5200 DATA
5210 DATA
5220 DATA
5230 DATA
5240 DATA
5250 DATA
5260 DATA
5270 DATA
5280 DATA
5290 DATA CB, 8F, "RES 1,A"
5300 DATA CB, 90, "RES 2,B"
5310 DATA CB, 91, "RES 2,C"
5320 DATA CB, 92, "RES 2,D"
5330 DATA CB, 93, "RES 2,E"

5700 DATA CB,BS, "RES 7,B"
5710 DATA CB,B9, "RES 7,C"
5720 DATA CB,BA,"RES 7,D"
5730 DATA CB,BB, "RES 7,B"

Advanced User Guide

15

5740 DATA CB,BC, "RES
5750 DATA CB,BD, "RE:
5760 DATA
5770 DATA
5780 DATA
5790 DATA
5800 DATA
5810 DATA
5820 DATA
5830 DATA
5840 DATA
5850 DATA

The Amstrad Notepad

DATA

DATA

DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DA™

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

5

DATA
DATA

CB,¥8, "SET 7,B"
CB,F9, "SET 7,C"
CB,FA, "SET 7,D"
CB,¥B, "SET 7,B"
CB,¥C, "SET 7,R"
CB,FD, "SET 7,L"

DD,E1,POP IX
DD,E3, "EX (SP),IX"
DD, E5, PUSH IX
DD,ES9,JP (IX)
DD,F9, "LD SP, IX"
ED, 40, "IN B, (C)"
ED, 41, "0UT (C),B"
ED, 42, "SBC HL,BC"
ED, 44,NEG

ED, 45, RETN

ED, 46,IM 0
ED,47,"LD I,A"
ED, 48, "IN C, (C)"
ED, 49, "OUT (C),C"
ED, 4A, "ADC HL,BC"
ED, 4D, RETI

ED, 4F, "LD R,A"
ED,50,"IN D, (C)"
ED, 51, "OUT (C),D"
ED, 52, "SBC HL,DE"
ED,56,IM 1
ED,57,"LD A,I"
ED,58, "IN E, (C)"
ED, 59, "0UT (C),B"
ED, 5A, "ADC HL,DE"
ED,5E,IM 2

ED, 5F, "LD A,R"
ED, 60, "IN H, (C)"
ED, 61, "0UT (C),H"
ED, 62, "SBC HL,HL"
ED, 67, RRD

ED, 68, "IN L, (C) "
ED, 69, "OUT (C),L"
ED, 6A, "ADC HL, HL"
ED, 6F, RLD
ED, 72, “SBC HL, SB"
ED, 78, "IN A, (C) "
ED, 79, "OUT (C),A"
ED, 7A, "ADC HL, SB"
ED, 8B, OTDR

ED, A0, LDI
ED,A1,CPI

ED,A2, INI

ED, A3, OUTT

ED, A8, LDD
ED,A9,CPD

Advanced User Guide

1z

6940
6950
6960

DATA ED,AR, IND
DAT? ED,AB,OUTD
DATi ED,BO, LDIR
DATA ED,B1,CPIR
DATA ED,B2,INIR
DATA ED,B3,0TIR
DATA ED,
DATA ED, B9, CPDR

DATA ED,BA, INDR

DATA FD, 09, "ADD IY,BC"
DATA FD,19, "ADD IY,DE"
DATA FD, 23,INC IY
DATA FD, 29, "ADD IY,IY"
DATA FD, 2B,DEC IY

DATA FD,E3, "EX (SP),IY"
DATA FD,ES,PUSH IY
DATA FD,E9,JP (IY)
DATA FD,F9,"LD SP,IY"

REM Two byte: n

DATA 06, "LD B, *"
DATA OE, "LD C,*"
DATA 16, "LD D, *"

DATA D3, "OUT (') ar
DATA D6,SUB *

DATA DB, "IN A,*"
DATA DE, "SBC A, *"
DATA E6,AND *

DATA EE,XOR *

DATA F6,0R *

DATA FE,CP *

m Two byte: e

nAn 10,DINz *

DATA

DATA
DATA 22,"LD (*),HL"
DATA 2A,"LD HL, (*)"
DATA 31,"LD SP,*"

DATA 32,"LD (*),A"

118

The Amstrad Notepad

7540 DATA 3A,"LD A, (*)"
7550 DATA C2,"JP NZ,*"

7740 REM Three byte: IX/IY n

7760 DATA DD,34,INC (IX+%)
7770 DATA DD, 35,DEC (IX+*)

7780 DATA B, (IX+%)"
7790 DATA LD C, (IX+*)"
7800 DATA D, (IX+*) "
7810 DATA LD E, (IX+%)"
7820 DATA H, (IX4%) "
7830 DATA L, (IX+*)"
7840 DATA (IX4%) ,B"
7850 DATA (IX+%) ,C"
7860 DATA (IX+*),D"
7870 DATA (IX4%) "
7880 DATA (IX4%) H"

(IX+*),L"

7930 DATA DD, 8E, "ADC A, (IX+%)"
7940 DATA DD, 96,SUB (IX+*)
7950 DATA DD, 9E, "SEC A, (IX+¥)"
7960 DATA DD,A6,AND (IX+*)
7970 DATA DD,AE,XOR (IX+*)
7980 DATA DD,B6,OR (IX+*)
7990 DATA DD,BE,CP (IX+*)
8000 DATA FD,34,INC (IY+*)
8010 DATA FD,35,DEC (IY+*)

B, (IY+%)"
C, (TY+%) "
D, (IY4*)"
E, (IY+%) "
H, (I¥4%)"
L, (TY4%) "
(IY+%),B"
(TY4%) C"
LD (IY+*),D"
(I¥4%) E"
(IY+*),H"
8130 DATA FD,75,"LD (IY+*),L"

Advanced User Guide

19

DATA FD,77,"LD (IY+*),A"
DATA FD,7E,"LD A, (IY+*)"
DATA ¥D, 86, "ADD A, (IY+#)"
DATA ¥D, 8E, "ADC A, (IY+*%)"
DATA PD, 96,SUB (IY+*)
DATA FD, 9E, "SBC A, (IY+¥)"
DATA FD,A6,AND (IY+*)
DATA FD,AE,XOR (IY+*)
DATA FD,B6,0R (IY+*)
DATA FD,BE,CP (IY+*)

REM Four byte: n
DATA DD, 36, "D (IX+*),*"
DATA FD, 36, "LD (IT#%),*"

REM Four byte: nn
0 :

DATA DD, 21, "LD IX,*"

DATA DD,22,"LD (*),IX"
DATA DD, 2R, "LD IX, (*)"
DATA ED,43,"LD (*),BC"
DATA ED, 4B, "LD BC, (*) "
DATA ED, 53, "LD (*),DE"
DATA ED, 5B, "LD DE, (*)"
DATA ED,73,"LD (*),SP"
DATA ED, 7B, "LD SP, (*)"
DATA FD,21,"LD IY,*"

DATA FD,22,"LD (*),IY"
DATA ED, 2A, LD IV, (*)"

REM Four byte: IX/IY n

DATA DD,CB,06,RLC (IX+*)

DATA DD,CB, OE,RRC (IX+*)

DATA DD,CB,16,RL (IX+*)

DATA DD,CB,1E,RR (IX+*)

DATA DD,CB, 26,SLA (IX+%)

DATA DD,CB, 2E, SRR (IX+*)

DATA DD,CB, 3B, SRL (IX+*)

DATA DD, CB, 46, "BIT 0, (IX+*)"
DATA DD, CB, 4E, "BIT 1, (IX+*)"
DATA DD,CB, 56, "BIT 2, (IX+*)"
DATA DD, CB, SE, "BIT 3, (IX+*)"
DATA DD,CB, 66, "BIT 4, (IX+*)"
DATA DD, CB, 6E, "BIT 5, (IX+%)"
DATA DD, CB, 76 6, (IX+*) "
DATA DD,CB, 7E, "BIT 7, (IX+*)"
DATA DD, CB, 86, "RES 0, (IX+*)"
DATA DD, CB, 8, "RES 1, (IX+*)"
DATA DD,CB, 96, "RES 2, (IX+*)"
DATA DD, CB, 9E, "RES 3, (IX+*)"
DATA DD,CB,A6, "RES 4, (IX+*)"
DATA DD, CB,AE, "RES 5, (IX+*) "
DATA DD, CB, B6, "RES 6, (IX+*)"
DATA DD,CB, BE, "RES 7, (IX+*)"
DATA DD,CB,C6, "SET 0, (IX+*)"
DATA DD, CB,CE, "SET 1, (IX+*)"
DATA DD,CB,D6, "SET 2, (IX+*)"
DATA DD, CB,DE, "SET 3, (IX+*)"

<1
]

120

The Amstrad Notepad

DATA
DATA
DATA

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DD, CB, E6, "SET 4, (IX+*)"
DD, CB, ER, "SET 5, (IX+*) "
DD,CB,F6, "SET 6, (IX+*)"
DD,CB, FE, "SET 7, (IX+*)"
FD,CB,06,RLC (I¥+*)

FD,CB, O,RRC (IY+%)
FD,CB,16,RL (IY+*)
FD,CB,1E,RR (IY+*)
FD,CB,26,SLA (IY+*)
FD,CB, 2B, SRA (IY+*)
¥D,CB, 3E, SRL (IY+*)
FD,CB, 46, "BIT 0, (I¥+*)"
FD,CB, 4E, "BIT 1, (I¥+*)"
FD,CB, 56, "BIT 2, (IY4*)"
FD,CB, 5E, "BIT 3, (I¥+*)"
FD,CB, 66, "BIT 4, (IY+*)"
FD,CB, 6E, "BIT 5, (IY+*)"

FD,CB, 76, "BIT 6, (IY+*)"
FD,CB, 7B, "BIT 7, (I¥+*)"
FD,CB, 86, "RES 0, (IY+*)"
FD,CB, 8E, "RES 1, (IY+*)"
FD,CB, 96, "RES 2, (IY+*)"
FD,CB, 9E, "RES 3, (IY+*)"
FD,CB, A6, "RES 4, (IY+*)"
FD,CB, AR, "RES 5, (IY+#)"
¥D, CB, B6, "RES 6, (I¥+*)"
FD,CB,BE, "RES 7, (IY+*)"
¥D,CB, C6, "SET 0, (I¥+#)"
FD,CB,CE, "SET 1, (IY+*)"

SECTION 2

REFERENCE

CONTINUED . .. FROM THE
NOTEPAD MANUAL

There are a few features of BBC Basic which are essential for advanced programming
on the Notepad, but which were not covered in the computer’s manual. Therefore,
they are fully documented here and you should read the following descriptions if you
either want to use BBC Basic’s in-built assembler, wish to have control over how
Basic prints values to the screen, pass register values to machine code or integrate
Basic files with Protext wordprocessor files.

*SPOOL & *EXEC

There are several very good reasons for wanting to use these two commands, the first
being that you can actually type in your BBC Basic programs using the Notepad’s
built-in wordprocessor. So, for example, to enter a program called PROGRAM.BAS,
press [Function][Word], followed by (Word] then enter the file name:
PROGRAM.TXT, and start typing in the program.

‘When you have entered and checked the program press [Stop] to finish and then press
[Function][B] to enter BBC Basic. If you have a Basic menu program installed — and
you will know if you have — simply press [Stop] to exit it at this point and then type
NEW. Otherwise you will see Basic’s opening screen.

Now all you need to do is type:
*EXEC PROGRAM.TXT

and you will see each program line displayed on the screen in turn as if you had
typed them all in very quickly yourself. When finished you can now save the program
as a BBC Basic file by entering:

SAVE "PROGRAM.BAS"

The extension .BAS is recommended to:

Advanced User Guide 123

Q Distinguish it from a wordprocessor or other file
Q Show visually that it is a Basic file.

‘What has happened is that you have typed all the program into the wordprocessor as
an ASCII file (well, virtually). That is, a file containing all the keystrokes, just as you
typed them. In the second part of the process you told the *EXEC (execute)
command to execute all these keystrokes in order until the file is exhausted.

Now you are in a position to try out your program, so run it and see if it is working
in the way it’s supposed to. If not, you may want to make a couple of modifications
here and now in BBC Basic and try again. If you’re still not happy, it may need a
more major change, so here’s how to re-save the program as an ASCII file suitable
for editing with a wordprocessor. Just type:

*SPOOL PROGRAM.TXT
LIST

Again you will see every line of the program scroll past as the ASCII file is created.
Once done you need to type:

*SPOOL

on its own to turn the spooling off. You can now re-enter the wordprocessor by
pressing [Function][Word], followed by [Calc] and then selecting the file
PROGRAM.TXT for editing.

This technique may also be useful if you are using one of the larger programs from
this book and don’t have a RAM card. In this case Basic will try to store the entire
program in what is called the Notepad’s upper memory. This is a small area of RAM
and you can’t fit much in it.

However, the lower memory is about three times bigger but only wordprocessor
documents are stored here. So a clever trick you can use is to keep your BBC Basic
programs in ASCII form so that they stay in lower memory and then *EXEC them
into BBC Basic as and when you need to use them.

Having said that, if you intend to use the Notepad to any extent, it is highly
recommended that you buy a RAM card as one will make ALL the difference and
improve your productivity no end. For details of one source of supply please refer to
Appendix 6.

OPT n
This statement determines what output is produced on the screen when assembly

language routines are pi by the i The OPT is followed by
a number between 0 and 7, with the following results:

124 The Amstrad Notepad

OPT 0 Assembler errors suppressed, no listing

OPT 1 A bler errors listing disp

OPT 2 Assembler errors reported, no listing

OPT 3 Assembler errors reported, listing displayed

OPT 4 Assembler errors suppressed, no listing, assemble to 0%

OPT 5 A bler errors listing di: assemble to 0%
OPT 6 Assembler errors reported, no listing, assemble to 0%

OPT 7 Assembler errors reported, listing displayed, assemble to 0%

Usually you will only be concerned with OPTions 0 to 3 (4 to 7 are discussed later).
So, taking the numbers 0 to 3, if they are shown in binary as follows, you will see
that the right-hand bit defines whether a listing is to be displayed. If the bit is set then
yes, otherwise no. The left-hand bit covers whether errors are reported or not. If the
bit is set then yes, otherwise no:

=01

wnHo

The OPT statement can only occur inside the square brackets which signify the use of
assembler directives. If labels are used in your assembly listings you will need to
assemble them twice. This is known as a two-pass assembly, where the first pass
assembles the instructions and the second pass, once the locations of all labels have
been determined, adds all the label information (such as JP or JR addresses) to the
correct instructions.

Therefore, an assembly procedure might look like the following, where the variable
PASS is used in a FOR. . . NEXT loop to set the OPTion:

1000 DEF PROC assemble
1010 DIM A% 100

1020 FOR PASS=0 TO 3 STEP 3
1030 P%=A%

1040 [

1050 OPT PASS

1060 :

1070 \ Your code goes here. . .
1080 :

1090]

1100 NEXT

1110 ENDPROC

This will cause the assembler to list all the instructions as it assembles them. Once
you are sure a program assembles correctly you may wish to replace line 1020 with

Advanced User Guide 125

the following, which uses OPTions of 0 and 2, to suppress any assembly displays
other than errors:

1020 FOR PASS=0 TO 2 STEP 2

If you become serious about writing assembler programs there will come a time when
you'll need to assemble code to a memory address which is reserved or even
occupied by the Basic program itself. Obviously this is a big problem, but with a
simple solution. Luckily the Notepad allows you to perform Offset Assembly.

This is where a complete assembly goes ahead, as if it was assembled at the address
pointed to by P% but, in fact, the assembled machine code is stored starting at the
location pointed to by O%. In other words you can, for example, quite happily
assemble code to run from &C000 onwards (as you might if you were writing a 16K
system application to put in the first 16K of a RAM card), but actually only store the
code in a safe area of ram at &6000-&9FFF.

A procedure to do just that might look like this:

1000 DEF PROC assemble
1010 FOR PASS=4 10 7 STEP 3
1020 P%=£C000:0%=66000
1030 [

1040 OPT PASS

1050 :

1060 \ Your code goes here. . .
1070 :

1080]

1090 NEXT

1100 ENDPROC

As well as assigning O% to point to an area of memory you are CERTAIN is free,
note line 1010 where the variable PASS is assigned different values from before.

To explain: Going back to where OPT values 0 to 3 were examined in binary, if you
look at the binary equivalents of the numbers 4 to 7 you will see that the right-hand
bit pairs are still acting in the same way as before to control the display of listing
and/or error reports, but there is a new third bit on the left. It is this one (if set) that
tells the assembler to assemble at O% rather than P%:

Finally, once your assembly takes place without any errors, for a blank display during
Offset assembly you could change line 1010 to:

1010 FOR PASS=4 TO 6 STEP 2

126 The Amstrad Notepad

DEF

‘While in the assembler there are three undocumented commands you can use for
allocating space. They are DEFB, DEFW and DEFM which, in turn, allocate a single
byte, a two-byte word and a string of memory. These commands are used in place of
the BBC Micro’s EQUB, EQUW and EQUS keywords. Examples of acceptable
command syntax include:

DEFB &FF

DEFB byte

DEFB ASC("A")

DEFW 2%

DEFW 0

DEFW &1234

DEFM "This is a test"

REGISTER VARIABLES

Just as you could directly pass values to the 6502’s registers on the original BBC
Micro by setting A%, F%, X% and Y%, so you can with Z80 BBC Basic.

The variables available are A%, B%, C%, D%, E%, F%, H% and L%, which directly
correspond with the Z80's registers when treated as 8-bit single registers, rather than
register pairs.

So, for example, you could print a single character to the screen (with the call
TXTOUTPUT - &B833), using the following two commands:

A%=ASC("*")
CALL &B833

In addition, BBC Basic returns the contents of these registers to the variables when it
returns from a CALL or USR command.

In fact, USR can be a handy replacement for CALL because it also retuns the
contents of the alternate registers H' and L’. It does this by returning a 32-bit value
corresponding to H, L, H’ and L, in that order. This is the way BBC Basic internally
handles all 32-bit values.

@%

The NC100 manual mentions @% but gives you no details about using it. Using @%
you can manipulate the way numbers are displayed by the PRINT and STR$
commands. With it you can control the field width, the total number of characters
printed and the number of decimal places.

To use it you should consider @% as a four-byte number such as &01020304. The
most significant byte (called B4) has a value of &01 in the above example, while B1
has a value of &04, and so on.

Advanced User Guide 127

Byte B4

This is tested by the STR$ command to determine the format of strings created by it.
If B4 = &01 then strings will be formatted using the settings in @%, otherwise @ %
will be ignored.

Byte B3

This selects the format type where &00 is General format (G), &01 is Exponent
format (E) and &02 is Fixed format (F). In G format, numbers that are integers will
be printed as integers. Numbers in the range 0.1 to 1 will be printed as 0.1 (and so
on), while numbers less than 0.1 will be printed in exponential format.

Exponential format always prints numbers in scientific notation so, for example, 0.01
is printed as 1E-2, 100 is 1E2 and 1,234,567 is 1.234567E6.

Fixed format always prints numbers with a fixed number of decimal spaces. If a
number cannot be fitted into a field it reverts to the G format. The decimal points are
aligned vertically, making this format particularly useful for printing tables.

Byte B2

This controls the total number of digits printed by each format. By default B2 has a
value of &09. In G format B2 states the maximum number of digits (between 1 and
9) that can be printed before reverting to E format

In E format B2 specifies the total number of digits (between 1 and 9) to be printed
before and after the decimal point (not counting digits after the E).

In F format B2 specifies the number of digits (between 0 and 9) to follow the decimal
point.
Byte B1

This sets the over all print field width and may have any value between &00 and
&FF.

Here are some examples:

@%=&0000020A &0000090A &0002020A &0001020A
100= 1E2 100 100.00 1.0E2
10= 10 10 10.00 1.0E1
1 1 1 1.00 1.0E0
0. 0.1 0.1 0.10 1.0E-1
0.01= 1E-2 1E-2 0.01 1.0E-2

‘You can omit any leading zeros if you prefer.

128 The Amstrad Notepad

EDIT

There appears to be a slight problem with the Notepad’s EDIT command when used
incorrectly. For example if you, correctly, type:

EDIT 100

or:

EDIT100

you will get to edit line 100. But if you accidentally type any of:

EDIT #
EDIT#
EDIT [anything but a number]

(because, for example, your finger slipped and hit the # key which is next to
[Return]), then the Notepad will take as many of the first lines of the program as it
can and stick them all in Basic’s editing buffer, ready for you to combine them.
Actually you should receive an error message when this happens, but you can easily
get out of this by pressing [Stop].

It appears to be offering you the equivalent of:
EDIT 10,50

which means edit lines 10 to 50 inclusive, placing them all in the edit buffer, but with
a slight change of syntax making the command mean:

EDIT ,

shorthand for edit all the lines you can from the start of the program into the edit
buffer.

Another problem you may encounter with EDIT is if you use Basic keyword
shortcuts (where P. stands for PRINT, R. for RETURN, and so on), and enter the
command E. (short for ENDPROC) at the start of a line while in AUTO mode. In this
case Basic actually interprets this as the EDIT command and throws you out of
AUTO mode and into the EDITor, again with as many lines crammed into the edit
buffer as will fit.

The short and simple answer to this is to forget about using E. any more, use EN.
instead and there will be no further confusion between EDIT and ENDPROC.

UNDOCUMENTED FEATURES

TRANSFERRING BBC BASIC PROGRAMS

There is what, at first sight, appears to be a problem with the NC100 which prevents
you from backing up your BBC Basic programs to another computer, because by
default they are not visible. That is because an unconfigured NC100 is set up NOT to
display file dates and times, but in order for you to transfer them these MUST be
visible. Apparently the default mode is the simple, beginner's mode, while this is the
advanced mode.

Anyway, what you have to do to configure date displays is press [Function][X] to
enter the front menu, then press [Menu] followed by the down cursor key twice and
the right cursor key once, to set the display format of dd/mm/yy.

Now you're ready to transfer your files, so press [Function](L] to list the files, select
the one to send using the cursor keys, press [Menu] and continue with your transfer
as normal.

Ready to send a file
QUICK MACRO ASSIGNING

While editing documents you may know that you can assign a sequence of key
strokes on to a single key press (known as a macro), by pressing [Menu], selecting
[M] for Macros, pressing [Symbol][key] or [Symbol[Shift][key] (where key is any
key between [A] and [Z]), then typing in the sequence of keys, and finally selecting
[Menu] and [M] again to end the recording of the Macro.

130 The Amstrad Notepad

Thankfully there are two quick and easy short cuts available. The first is to press
[Shift][Control][M] to initiate the recording, then press the key combination the
macro is to be assigned to, the key macro sequence itself, and press [Shift](Con-
trol](M] a second time to end the recording. This feature is also available outside of
the word processor but not in BBC Basic.

Defining a macro

LINE DRAWING CHARACTERS

If you wish to change the character used for line drawing with the [Symbol] and
cursor key (for example, to use an asterisk), press [Shift][Control[C] and then press a
key such as * then, when you next draw lines, they will be made up of asterisks.
‘When you have finished, as advised in the manual, to return to standard line drawing
mode press [Shift][Control][L] and to switch between single and double line mode
press [Shift][Control][D].

B [Fomee——

Thankvou For wour letter of the 24th X N N
W

Line drawing using asterisks
PAGE DISPLAY MODE

To toggle Page Display mode on and off quickly , press [Shift][Control][(P]. You will
notice the display alternates between Page n and Ch nnnnn, where n is the page
number and nnnnn is the offset of the current character from the document start. Also,
all the triple-line page break markers between pages will not be displayed.

(Note the difference here)
Dear Mr. Jones,
Thankwou For your letter of the 24th

Toggling Page mode on and off

Advanced User Guide 131

USING THE FILE SELECTOR

Wherever you need to load in or browse through files the File Selector function is
called by the Notepad. This includes the *. (catalogue disk) command in BBC Basic
and all listings in this book that use files.

However, the operation of the File Selector is not fully documented in the NC100
Notepad Manual so, in case you have not yet discovered the undocumented key
presses, here’s what else you can do with it:

Firstly, of course, you already know that the cursor keys move the highlight around,
but if you press [Control] while doing so the [Up] and [Down] keys place the
highlight on the first or last item in the current column, while the [Left] and [Right]
keys respectively display the first and last set of (up to) 14 files (if there are more
than 14),

In addition, you can display any hidden files (such as those created by the Diary
program) by pressing [Shift][Control][H]. So, for example, if you have a diary entry
set for the 1st of July, 1994, you would see the file name 00I_07_1994. In fact a
separate file is created for each and every day you enter in your diary. To make the
files invisible again press [Shift][Control][H] a second time.

Four hidden appointment files

You will also be interested to hear that for some unknown reason, the undocumented
macro assignment command [Shift][Control[M] also works from inside the File
Selector (except when you are in BBC Basic).

Lastly, there’s a quick and dirty way of deleting unwanted files. Simply move the
highlight to your chosen file and press either [Del->] or [<-Del] (on the top-right of
your keyboard). You will then be asked whether you want to delete the document.
This is quicker than pressing [Menu] followed by [D], for delete, but do be careful.

PEEKING ABOUT

The last known undocumented key combination is [Shift][Control](Stop]. If you are
editing a document and press it, the screen clears (except for the time) and you get a
command line at the top-left. This appears to be the equivalent of Command Mode,
found on all other implementations of Protext. So far three commands are known.

132 The Amstrad Notepad

ke o "This is a HACRO"

The command mode macro define command

There is KEY which is another means of defining macros. To use it type a command
such as:

KEY A Testing

The other two commands are complementary. The first is DU which dumps any part
of the Notepad’s RAM or ROM (whatever is mapped in) to the screen. Simply type:
DU &4000

or whatever other address you are interested in, and all the data will be printed to the
screen in h i and as Ascii just press [Stop] to stop the screen

from scrolling, any other key to resume printing, or [Stop] a second time to return to
the command mode.

il

Dumping memory to the screen

Using the MM command you can map in other parts of the system memory to
location &4000, which you can then view using the DU command. So, to page in the
Basic ROM, you would type:

MM 65

The values you can use and the RAM or ROM that gets paged in are:

M &00 ROM — Operating System

MM &01 ROM - Control code

MM &02 ROM - Calculator

MM &03 ROM - Address book

MM &04 ROM - Diary

MM &05 ROM - BBC Basic

MM &06 ROM - Protext

MM &07 ROM - Protext

MM &08 ROM - Spell Check Code

MM &09 ROM - Spell Check Code

MM &0A ROM - Dictionary

Advanced User Guide 133

MM &0B ROM - Dictionary

MM &0C ROM - Dictionary

MM &0D ROM - Dictionary

MM &0E ROM - Dictionary

MM &0F ROM - Dictionary

MM &40 RAM - Internal RAM

MM &41 RAM - Internal RAM

MM &42 RAM - Internal RAM

MM &43 RAM - Internal RAM - Including Video RAM

MM &80- RAM - Card RAM of up to 64 x 16K blocks (for 1Mb card)

See Chapter 3 for specific details on mapping the video RAM into main memory, and
Chapter 4 for a detailed explanation of the NC100’s memory map and how to map
any parts of it into the core 64K area.

UNDOCUMENTED SELF-TEST

There is a POST (Power On Self-Test) built into the NC100 which performs a
number of diagnostic tests. To call it up switch off your Notepad, hold down
[Function] and [Symbol] and then switch it back on again, while still holding down
these two keys.

You will then be able to go through the tests by pressing [Return]. The first test sets
every pixel on the display, so that you can tell whether they are all functioning. Next
all the characters in the character set are displayed. Next you see the value of the
Memory/Battery/Status byte, the Real Time Clock and then the 12 internal ROMs are
checked, followed by all the RAM.

Now you have an opportunity to test the keyboard to make sure all the keys are
returning values. This may be useful if you are getting spurious key strokes. If you
note a problem here it may be a good idea to try to suck out any material under the
keys with a vacuum cleaner.

Next you get to test the parallel port by printing three lines of characters to a printer.
If you have a laser printer you will not notice anything happening (even if this test is
successful), until you send a Form Feed to it to eject the page (or press the Form
Feed button on the printer).

Now it gets noisy because both the A and B sound channels are tested, so if you are
on a train or something you’d be best advised to place your palm over the speaker
grill first.

And finally, you come to the end of the tests where you get an opportunity to run
through them again or return to the Notepad’s front menu.

134 The Amstrad Notepad

SAVING THE SCREEN

If you ever wondered how the screen dumps in this book and the NC100 manual
were created, here’s the answer. Each time you press [Shift][Control][S] the computer
appears to lock up for a few seconds. In fact it’s copying the entire contents of the
screen to a file. The first file is saved with the file name s.a, while subsequent files
are called s.b, s.c and so on, up to s.z and then through the ASCII set from s.{
onwards.

To reset the file name to s.a again for your next screen grab you will need to enter
Basic by pressing [Function][B] and then type:

?&B140=96

96 being the ASCII value one before the character a. The files created are 4,096 bytes
long and consist of 64 rows of 64 bytes. Characters on the NC100 are six pixels wide
and there are 80 of them on a line, making the screen 480 pixels wide. This equates
to just 60 bytes, so the final four bytes at the end of each line are ignored. In all 256
bytes per screen are wasted but, for convenience and speed, all 4,096 bytes of screen
memory are saved to the file.

1 4@
i %

HESRES

The menu system showing several saved screens

Knowing this you can write your own programs to dump these screens to a printer or
even convert them to industry standard PCX or TIFF files. But following are some
example programs you may find useful for manipulating screen dumps both on the
Notepad and on an IBM PC using Borland’s Turbo C compiler.

GRAB2PCX.BAS

This BBC Basic program creates an exact PCX image of a screen dump. It uses the
File Selector to choose files and only allows file names that begin S. to check that
they are screen dump files. The PCX file created is totally uncompressed, takes up
about 8K and should be readable by any program that can read the PCX format.

10 REM NC100 Screen grab to PCX converter
so CLS:DIM A% 4o, a\ 128:PROCassemble

40 FOR J%=1 TO 12|
50 READ B%?J%

Advanced User Guide 135

60 NEXT

70 PRINT "GRABZPCX.BAS: Press any key for the File Selector...";
:G§=GET§

80 !Al.'-ﬂulleﬁ IF file!

90 IF LEFT§(file$,2) <> "s

" THEN CLS:END
THEN PRINT "Not a screen grab..."’:GOTO

100 f£ile2$=LEFTS(file$,1)+RIGHTS (file§,1)+".pex"
110 handlein=OPENIN (file$)

120 handleout=OPENOUT (£1ile2§)

130 FOR J¥=1 7O 128

140 BPUT #handleout,BY?J%

150 NEXT

160 PRINT "GRABZPCX.BAS: Creating file: ";file2s’
170 PRINT "Processing line (of 64):

180 PRINT:PRINT "When finished this pogram will"
190 PRINT "offer to convert another file

200 FOR K¥=1 TO 64

210 VDU 31,25, 2:PRINT ;K%

220 FOR J¥=1 70 6

230 BPUT #handleout,&C1

240 BPUT #handlecut,BGET #handlein

260 FOR N¥=1 TO 4
270 D¥=BGET #handlein
NEXT

290 NEXT

300 CLOSE #handlein
310 CLOSE #handleout
320 GOTO 80

0 :
340 REN PCX header block
0 :

360 DATA &A,S5,1,1,0,0,0,0,4DF,1,43F,0,0,0,0,0
', &¥¥,0,0,0,0,0,0,0,0,0,0

CALL
470 IF buffer?0 = 0 THEN CLS

490 FOR J%=0 TO 11
500 IF buffer?J% THEN R§=R$+CHRS (buffer?J%) ELSE J¥=12
0 NEXT

°
550 FOR PASS=0 TO 2 STEP 2
560 PY=A%

570 [

580 OPT PASS

590 CALL &BSC3

600 LD DE,buffer

610 JR C, found

620 LD A,0

630 LD (DE),A

640 RET

650 .found

136 The Amstrad Notepad

G2P-BORD.BAS

This program is identical to the one above except that it draws a border asound the
dump before saving it as a slightly larger PCX file with dimensions of 496x80. If you
simply modify the first program rather than type all this one in, remember you will
need to modify the data lines from line 730 to 800 too.

10 REM NC100 Screen grab to PCX converter
20 REM Version 2 - Creates a black border
30
40 CLs:DIM A% 40 B\ 128:PROCassemble
50 FOR J%=1 TO
60 READ B%2J%
70 NEXT
80 pmr "GRAB2PCX.BAS: Press any key for the File Selector..
:G§=GE!
90 zun-n. lect:IF file§="" THEN CL!
100 IF LEFTS(file$,2) <> "s." THEN PRDIT "Not a screen grab...

110 f£ile24=LEFTS (£ile§,1)+RIGHTS (file$,1)+".pcx"
120 handlein=OPENIN (files$)
130 handleout=OPENOUT (£ile2$)
140 FOR J%=1 TO 128
150 BPUT #handleout,B%$?J%
NEXT

170 PRINT "GRAB2PCX.BAS: Creating fil,
180 PRINT "Processing line (of 64)
190 PRINT:PRINT "When finished this pogran will”
200 PRINT "offer to convert another file

210 FOR K$=1 T0 2

220 FOR J=1 TO 62

230 BPUT #handleout, &C1

240 BPUT ¥handleout, SFF

250 NEXT

";file2§’

NEXT

270 FOR Ké=1 T0 6

280 BPUT #handleout, &C1
290 BPUT #handleout, &CO
300 FOR J¥=1 TO 60

310 BPUT #handleout, &C1
320 BPUT #handleout, 500
330 NEXT
340 BPUT #handleout, &CL
350 BPUT #handleout, £03

Advanced User Guide

NEXT

FOR Kt=1 TO 64

VDU 31,25, 2:PRINT ;K%

BPUT #handleout, &C1

BPUT #handleout, &CO

FOR J%=1 TO 60

BPUT #handleout, &Cl

BPUT #handleout,BGET #handlein
NEXT

BPUT #handlecut,&Cl
BPUT #handleout, &03
FOR N%=1 TO 4
D$=BGET #handlein
NEXT

NEXT

FOR K%=1 70 6

BPUT #handleout,&C1
BPUT #handleout, &CO
FOR J¥=1 TO 60
BPUT #handleout,&C1
BPUT #handleout,&00
NEXT

BPUT #handleout,&CL
BPUT #handleout, £03

BPUT #handleout, &C1
BPUT #handleout, sFF
NEXT
NEXT
CLOSE #handlein
CLOSE #handleout
GoT0 90
0 :

REM PCX header block
0 :

DATA §A,5,1,1,0,0,0,0, GEF

CALL A%
IF buffer?0 = 0 THEN CLS:=""
R§=""

FOR J%=0 TO 1:
IF
NEXT
=R§

1
THER, 8 (20%) ELSE J%=12

DEF PROCassemble
FOR PASS=0 TO 2 STEP 2

LD DE,buffer

The Amstrad Notepad

1140

GRABDISP.BAS

To complement the previous program this one will display an S. screen grab so you
can determine whether it has saved correctly and is what you want before converting
to PCX. Use the cursor keys to select a file and press [Return] to view it. Non-screen
dumps will be displayed as garbage.

10
20
30
40

70

0 CALL scrn_from disk

ON ERROR GOTO 90
VDU 26:CLS:DIM Z% §80:PROCassenble
PRINT "GRABDISP"

PRINT "Pre key to select a screen grab to display...":G$=GET$

0 CALL getfile:IF ?filename=0 THEN GOTO 90
GS§:

GOTO 50

ON ERROR GOTO 110

VDU 26:CLS:IF ERR=17 THEN CHAIN "AUTO"
REPORT:PRINT" at line
PRINT:PRINT"Press [Function] [X] for Notepad Main Menu"
END

DEF PROCassemble
fopenin=cB8A2
£inblock=5B896
fclose=6B890

FOR PASS = 0 TO 2 STEP 2
Pa=z%

OPT PASS
scrn_from disk

LD HL, filename

Advanced User Guide

139

30 :
340 .froml

350 :

360 LD HL, 8000

420 LD DE, &F000
430 LD BC,&£1000
440 LDIR
450 CALL map_scrn_out
460 LD HL,flag
470 LD (HL),1
RET

500 .map_scrn_in
0 :

520 LD A, (&B003)
530 LD (state),A
540 LD A, 67

550 LD (&B003),A
560 OUT (&13),A

590 .map_scrn_out
0

610 LD A, (state)
620 LD (&B003),A
630 OUT (&13),A
640 RET

650 :

flag

680 DEFB 0

720 DEFB 0
0 :

740 .getfile
0 :

760 CALL &B8C3

770 LD DE, filename
780 JR C, found
0

140 The Amstrad Notepad

950 NEXT
960 ENDPROC

NC2PCX.C

This IBM-compatible Borland Turbo C program is identical to the BBC Basic
program GRAB2PCX.BAS except that, being compiled and running on a PC, it is
extremely fast.

#include <stdio.h>

#include <stdlib.h>
#include <dos.h>

char data[128
{

coooooog

¥

main (argc, argv)
int arge;

char *argv([]);

{

FILE *fpin, *fpout;
int 3,k byte;

if (arge<3)
printf("Type: NCPCX filename filename");
exit (0);

}

fpin=fopen (argv[1], "rb");

if (fpin == NULL)

{
printf("\nFile %s not found.", argv(1]);
exit (0);

fpout=fopen (argv[2], "wb") ;

if (fpout == NULL)

printf ("\nCannot create file %
exit (0);

for (J=0 ; 3<128 ; ++3)
{

Advanced User Guide 141

fputc (data[))], fpout) ;

for (k=0 ; k<64 ; ++k)
{
for (3=0 ; 3<60 ; ++3)
{
byte=fgetc (fpin);
fpute (Oxcl, fpout) ;
fputc (byte, fpout) ;
fgetc(fpin); fgetc(fpin); fgetc(fpin); fgetc(fpin):
fcloseall();

NC2PCXB.C

This IBM-compatible Borland Turbo C program is identical to the BBC Basic
program G2P-BORD.BAS except that, being compiled and running on a PC, it is also
extremely fast.

#include <stdio.h>

#include <stdlib.h>

#include <dos.h>

char data[128)=

0x0a,5,1,1,0,0,0,0, Oxef, 1,0x4£,0,0,0,0,0,
0,0,0, 0x££, OX£L, OXLEL, 0

,0,0,0,

main (argc, argv)
int arge;

char *argv(];

i

FILE *fpin, *fpout;
int 3,k byte;

if (arge<3d)

{
printf("Type: NCPCX filename filename");
exit (0);

fpin=fopen (argv([1], "rb");

if (fpin == NULL)

{

printf("\nFile %s not found.",argv([l]);
exit (0);

142

The Amstrad Notepad

}
fpout=fopen (argv([2], "wb");

if (fpout == NULL)

printf("\nCannot create file %¥s.",argv[2]);

exit (0);

for (3=0 ; 3<128 ; ++3)

fputc(data[j], fpout);

for (k=0 ; k<2 ; ++k)
for (3=0 ; 3<62 ; ++3)
{

fputc(Oxel, fpout) ;
fputc (Ox£f, fpout) ;

}
for (k=0 ; k<6 ; ++k)
{
fputc(Oxcl, fpout) ;
fputc (0xco, fpout) ;

for (J=0 ; 3<60 ; ++3)

fpute (0xcl, fpout:
fpute (0x00, fpout:

fputc (Oxcl, fpout) ;
fpute (0x03, fpout) ;
}

for (k=0 ; k<64 ; ++k)
{

fputc (0xcl, fpout) ;
fputc(0xc0, fpout) ;

for (3=0 ; 3<60 ; ++9)
{
byte=fgete (fpin) ;

fpute (Oxel, fpout) ;
fputc (byte, fpout) ;

fputc (Oxcl, fpout) ;
fputc (0x03, fpout) ;

fgetc(fpin); fgetc(fpin); fgetc(fpin); fgetc(fpin);

}
for (k=0 ; k<6 ; ++k)

fputc (Oxcl, fpout) ;

Advanced User Guide 143

fputc (0xa0, fpout) ;
for (3=0 : 3<60 : ++3)
{
fputc (0xcl, fpout) ;
fpute (0x00, fpout) ;.
}
fputc (0xcl, fpout) ;
fputc (0x03, fpout) ;
}
for (k=0 ; k<2 ; ++k)
{
for (J=0 ; 3<62 ; ++j)

fpute (Oxcl, fpout) ;
fpute (Ox£f, fpout) ;

}

fcloseall();

PCX2NC.C

This final Turbo C program is for restoring non-bordered PCXs back to the original
format, as saved by the Notepad. This is in case you may wish to then transfer one
back to your Notepad or, perhaps, convert it to the bordered PCX format. It’s also
useful if you happen to have deleted your original . files.

#include <stdio.h>

#include <stdlib.h>
#include <dos.h>

char data[128]=

¥

main (argc, argv)
int arge;

char *argv(];

{

FILE *fpin, *fpout;
int n,byte, len,val,count,offset;

if (arge<3)
{

The Amstrad Notepad

printf("Type: NCPCX filename filename");:
exit (0);

fpin=fopen (argv(1], "zb");

if (fpin == NULL)
printf("\nFile %s not found.",argv[l]);
exit (0);

fpout=fopen (argv(2], "wb") ;

if (fpout == NULL)

¢ Pprintf("\nCannot cre
exit(0);

fseek (fpin,128L,0) ;

offset=0;

for (count=0 ; count<3840 ;)
byte=fgetc (fpin);
1(.2 ((byte & 0xc0) == 0xc0)

len=byte & Ox3f;
val=fgete(fpin);

for (n=0 ; n<len ; ++n)

fputc (val, fpout) ;
++offset;

++count ;
}

else

{
fputc (byte, fpout) ;

++offaet;
++count;

}

if (offset == 60)
{

offset=0;
fputc (Oxff, fpout); fputc (Oxff, fpout);
fputc (Ox££, fpout) ; fputc (Ox£f, fpout);

}
fcloseall();

WRITING EXTERNAL
PROGRAMS

L _ctead WoTo [London [l Tha TTFeb T L TH: 100 i
ki HiicEen Lottt . i i |
YELLm.:’ED YELLm’EREEN YELL(‘BLlE

You can create your own similar applications

The simplest and safest way to develop for the Notepad is to get a PCMCIA drive for
your PC and write a binary image direct to the card using that. If this isn’t possible
then small programs (up to 16K) can be developed by transferring the binary card
image into the Notepad using Xmodem from the PC. Then use the Make program
card feature in the File transfer menu to write that file on to a newly formatted
PCMCIA RAM card.

You can also use the BBC Basic assembler’s Offset assembly facility which will
allow you to write code that is assembled as if it were at &C000 but actually places
the code elsewhere, so that you can save it to a RAM card and run it. Note that you
will probably need two cards for this: the first for your source code and other files,
the second for testing your application. See Chapter 1 for full details on using offset
assembly.

However you create it, to run the resultant code, you just press [Function][X] and the
first 16K page of the RAM card will be switched to the Z80 memory map at
&C000-&FFFF. A Check is then made that location &C200 holds the ASCII text
NCI00PRG and also that locations &C210-&C212 contain a long jump to &C220.

All being well, the Z80 will start executing code at &C210 so that, once you have
control, you can take over completely if you wish (driving all hardware functions

146 The Amstrad Notepad

directly). Most people will probably want to cooperate with the in-built firmware as it
provides most of the routines that you could want anyway.

But you MUST follow a few important rules in order for your application to be
recognised by the system and to interact correctly with it. First of all the program’s
origin MUST be &C210, and the first instruction must be a JP &C220.

From &C213 to &C21F you need to store the name of your application, followed by
a zero byte. The total length of the name including the zero terminator may not be
longer than 13 characters. Here's an illustration:

ORG £C200 DB "NC100PRG"
ORG £C210 JP start DB "PROGRAM NAME",0
ORG £C220 [Your program goes here]

The available workspace is from &A000 to &A3FF, but it is shared with other
programs so never assume certain data is left where you put it if another application
has been executing in the meantime. You can also use &A800 to &AFFF, but beware
that this well be overwritten if the File Selector is called.

For interaction with the rest of the system, add-on applications MUST handle Yellow
events. For example: either exit when [Stop] is pressed or check for a yellow event
with KMGETYELLOW, and return if the carry flag is set.

Serious pers may be i in ing Ranger C on 0604
589200 as they can produce a device that looks like RAM to a PC but ends in a
PCMCIA header plug that connects directly to the Notepad’s card slot and the PC
RAM appears as card RAM to the Notepad.

Another alternative is the excellent shareware cross assembler, TASM, which can
assemble code for 10 different microprocessors, including the Z80. You should be
able to get hold of a copy from your favourite shareware library, or you can
download it from the Assembler library in the IBMPRO forum on CompuServe, and
it may be available on other bulletin boards.

In conjunction with the Lapcat lead and software available from Amor (See Appendix
6), you will then be able to assemble object files and transfer them directly to a RAM
card in your Notepad. But make sure the card is freshly formatted before doing so, to
ensure that the code is stored in the first 16K of RAM.

USING THE NOTEPAD’S LCD DISPLAY

Because the Z80 is restricted to addressing an area of no more than 64K, if you want
any more RAM or ROM you have to page it in to order. This way you can have 16K

Advanced User Guide 147

blocks of memory containing code or data for different purposes and then use a bank
switching device to map blocks in when they are needed.

And, of course, this is what the NC100 does. In facl it has 256K ROM and 64K
RAM of memory built in so it uses very memory

techniques to page everything into the small 64K area at exactly the right times.
Although the screen is only 4K long, that is still too precious an amount of memory
to give up permanently, so even the screen ram is only paged in when it has to be
written to or read from (although the LCD display does have permanent access 1o it,
in order to keep it visible all the time).

For technical reasons only 16K chunks of memory can be switched in at any one
time, so when you select the screen you get an extra 12K mapped in containing other
data. All you need be concerned about though, is the top 4K area as this is where you
will always find the screen.

The RAM containing the screen can be mapped into any of the four 16K locations in
the 64K memory map by issuing the correct OUT statement to ports &10-&13, Like
this:

1D A,67 ; This signifies the screen ram block

OUT (£10),A ; for £0000, or:

OUT (&11),A ; for &4000, or:

OUT (s12),A ; for &8000, or:
OUT (£13),A ; for &C000

However, it is strongly recommended that BBC Basic programs should use the final
one of these calls in order to map the screen in at &C000 so that BBC Basic’s own
RAM area is not affected. In fact, as it is only 4K long, the screen is mapped in at
&F000 and, because the other 12K is reserved, make sure you do sufficient bounds
checking so that screen writes don’t stray into it.

In addition, the bank switching registers are write-only. Therefore, for the NC100 to
know its current status at any time it must refer to its own copy of the various
settings. These are held at locations &B000-&B003. So, before you write to any of
the ports you must first read the value from the relevant location and store a copy
(perhaps by pushing it on the stack), then write your new value back to this location,
and only then write the value to the port, like this:

LD A, (&B003)
PUSH AF

A, 67
LD (&B0O03),A
oUT (£13),A

To put a screen back from where you got it, pop the value off the stack (or get it
from where you stored it) and write it to the location before also writing it to the
bank switching port, like this:

148 The Amstrad Notepad

0P AF

LD (&BOO3),A
OUT (&13),A
RET

Courageous users may wish to experiment with using values other than 67 and
mapping the NC100’s various RAM/ROM blocks somewhere in memory (such as at
&4000, so that you can still use the screen) in order to have a peek at how the
computer is i But this is not for the faint-hearted! You can
also examine the RAMs and ROMs using the MM and DU commands available from
Protext’s command mode, described in Chapter 2.

Anyway, down to the nitty-gritty. Here’s some example code for directly accessing
the video ram on a pixel level. In order to access a given X,Y location on the screen
you have to perform the following steps:

Q Save the old memory block

Q Map in the video memory

Q Multiply the Y pixel address (0 to 63) by 64

Q Add on the X byte address (0 to 60)

QOR with &70 to convert to address between &F000 and &FFFF
Q Read from or write to the eight pixels pointed to

Q Restore the old memory block

In the following example HL is the Y pixel. H is always zero and L has a value
between 0 and 63, inclusive, while DE is the X offset which ranges from 0 to 479.
This program will display a single pixel towards the top right-hand side of the
display:

cLs
20 DIM A% &100
30 PROCassemble
40 CLS:CALL A%
END

60 DEF PROCassemble

70 FOR PASS=0 TO 3 STEP 3
80 P¥=A%

90 [

100 OPT PASS

110 :

120 . start

130 :

140 LD HL,3

150 LD DE,377

160 :

170 ; Save memory, and set video memory
180 :

190 LD A, (§B003)
200 PUSH AF

Advanced User Guide

210 LD A,
220 LD (&FO03),A
230 OUT (&13).A

; Multiply HL by 64 (bytes per pixel line)

0 :
490 ; Divide DE by 8 to get pixel addre
500 :
510 SRL D
520 RR B
530 SRL D
540 RR B
550 SRL D
560 RR E

580 ; Add on X address to start of pixel line
600 ADD HL, DE

0 :
620 ; Convert to range &F000-GFFFF

0 -

640 1D A,H

@
2
g
2

660 LD H,A

670 :

680 ; HL now points at 8 bits of screen memory, so write pixel
0 :

; Now clean up

0 POP AF
780 LD (£B003),A
790 OUT (&13),A
800 RET

150 The Amstrad Notepad

Most of this program is pretty self-explanatory, but there are two bits that need
further discussion. Take a look at lines 370-470. Here, the E register is copied to A
and then ANDed with 7. This leaves it with only the three right-most bits (a number
between 0 and 7). 5

The contents of A are then transferred to B, A is zeroed, the carry flag is set, and the
loop called power rotates A right the number of times stored in B. This moves the
pixel to be set to the correct location. The RRA command moves all the bits in A to
the right, at the same time placing the contents of the carry flag in bit 7 (on the left),
and the contents of bit 0 into the carry flag.

The value in A is then stored by PUSHing AF on to the stack where it is later
retrieved at line 700 and ORed with the contents of the location pointed to by HL. If
you wanted to clear the pixel you would first issue an XOR &FF and then AND with
B instead.

‘gE‘ IL’ESE BF
1653 3§ 80 48d03),
1 1 T (313
1 i Muitiply HL by B4 (bytes per pixel line)
Esoape at |ine 270

Assembling the example pixel setting program

THE NOTEPAD’S
INPUT/OUTPUT PORTS

16K code/data sections always mapped to &C000

video RAM Protext |Dictionary [Con- (Cale |Addr |Diary| BBC
RAM 1oz | e'biecks
€000
stack/variables
——————————————— BO00 | common RAM (accessible by all programs)
RAM /
8000
RAM PLS
4000 spell
05- remaps high checking
RAM code
Startup code
0

The NC100's memory map

You will not often need to make use of the Input/Output ports on the Notepad, but all

the details you need are here for when you do, including mapping the video RAM
into the core 64K of RAM, determining the battery and memory card status,
communications configuration and so on.

&00 'WRITE ONLY START ADDRESS OF DISPLAY MEMORY
bits 0-3 Not used

bit 4 Address line &0C
bit 5 Address line &0D
bit 6 Address line &0E

bit 7 Address line &OF

152 The Amstrad Notepad

On reset this is set to 0.

The display memory for the 8-line NC computers consists of a block of 4096 bytes
where the first byte defines the state of the pixels in the top left-hand comer of the
screen.

A 1 bit set means the pixel is set to black. The first byte controls the first eight dots
with bit 7 controlling the bit on the left. The next 59 bytes complete the first raster
line of 480 dots.

The bytes which define the second raster line start at byte 64 to make the hardware
simpler so bytes 60, 61, 62 and 63 are wasted. There are then another 64 bytes (with
the last four unused) which define the second raster line and so on straight down the
screen,

So the layout is like this:
BYTE 00 BYTE 01 BYTE 02
Bit No. 76543210 76543210 76543210
Pixel No. 00000000 00111111 11112222
01234567 89012345 67890123

Character No.
(for 1 row) 0--=--- 1- e 3--mm

This continues on for subsequent lines. For example, the second line is the range of
bytes 64-127, and line three is 128-191, and so on. You may also have noticed that
displayed characters are only six pixels wide, so slightly unusual routines are required
to read and write them, although you can use the Jump Block calls to do this for you.

&10-&13 READ/WRITE: MEMORY MANAGEMENT CONTROL
These addresses control the NC 100’s bank switch capabilities. Writers of external

applications will most like use them for accessing the display RAM for direct screen
reading and writing. Port:

10 controls 0000-3FFF
11 controls 4000-7FFF
12 controls 8000-BFFF
13 controls C000-FFFF

On reset all are set to 0. For each address the byte written has the following meaning:

bits 0-5 determine address lines 14-19.
bit 6 selects internal RAM
bit 7 selects card RAM

Advanced User Guide 153

If neither bit 6 or bit 7 are set then ROM is selected. Therefore:

&00 is the first 16K of ROM

&01 is the second 16K...

&40 is the first 16K of internal RAM,
&41 is the second 16K...

&80 is the first 16K of card RAM
&81 is the second 16K...

So, for example, if you want to switch the third 16K of internal RAM so the
processor sees it at &4000-&7FFF you would output the value 42 to I/O address &11.
42 has bits 6 set to 1 and bit 7 to 0, while bits 0-5 are 00010b which is the third 16K
of internal RAM.

Therefore, to switch the screen (which is the fourth 16K of internal RAM) into the
fourth 16K of mapped RAM so that the processor sees it between &C000 and
&FFFF, you would output the value &43 (67 decimal) to port &13.

Here is a broad overview of the NC100’s layout and the values required to map each
16K block in to one of the four areas of memory:

&00 ROM - Operating System
&01 ROM - Control code
&02 ROM - Calculator

&03 ROM - Address book
&04 ROM - Diary

&05 ROM - BBC Basic

&06 ROM - Protext

&07 ROM - Protext

&08 ROM - Spell Check Code
&09 ROM - Spell Check Code
&0A ROM - Dictionary

&0B ROM - Dictionary

&0C ROM - Dictionary

&0D ROM - Dictionary

&0E ROM - Dictionary

&OF ROM - Dictionary

&40 RAM - Intemal RAM
&41 RAM - Internal RAM
&42 RAM - Intemal RAM
&43 RAM - Internal RAM - Including Video RAM
&80- RAM - Card RAM (up to 64 16K blocks)

154 The Amstrad Notepad

&20 WRITE ONLY MEMORY CARD WAIT STATE CONTROL
bit 7 = 1 for wait states, 0 for no wait

On reset this is set to 1. The bit should be set if the card RAM/ROM is 200nS or
slower.

&30 WRITE ONLY BAUD RATE

bits 0-2 set the baud rate as follows:
000 = 150
001 = 300
010 = 600
011 = 1200
100 = 2400
101 = 4800
110 = 9600
111 = 19200
bit3 UART clock and reset: 1=0ff, O=on
bit 4 uPD4711 line driver: 1=off, O=on
bit5 not used
bit 6 parallel interface Strobe signal
bit 7 select card register: 1=common, O=attribute

On reset all data is set to 1. If programming the UART directly ensure that TxD clock
is operating x16.

&40 WRITE ONLY PARALLEL INTERFACE DATA

The byte written here is latched into the parallel port output register. To print it you
must then take the Strobe signal (I/O address 30 bit 6) low and then high again. If the
printer sends ACK this may generate an IRQ if the mask bit is set in 1/O address 60 -
IRQ mask.

&50-&53 WRITE ONLY ~ SOUND CHANNELS PERIOD CONTROL

&50 channel A period low
&51 channel A period high
&52 channel B period low
&53 channel B period high

On reset all data is set to &FF. The top bit in the high byte (&51 and &53) switches
the respective sound generator on or off: 1=off, O=on. The frequency generated is
determined as:

Advanced User Guide 155

Frequency = 307,200
data

So if the data word programmed into &50 and &51 was &7800 (that is, &50=0,
&51=78) then the frequency generated would be:

Frequency = 307,200 = 307,200 = 10Hz
&7800 30,720

&60 WRITE ONLY INTERRUPT REQUEST MASK

bit 0 Rx Ready from UART

bit 1 Tx Ready from UART

bit 2 ACK from parallel interface
bit3 Key Scan interrupt (every 10mS)
bits 4-7 Not used

On reset all bits are 0. For each bit: 1=allow that interrupt source to produce IRQs,
O=interrupt source is masked.

&70 WRITE ONLY POWER OFF CONTROL

bit 0 1 = no effect, 0 = power off
bits 1-7 Not Used

On reset this is set to 1.
&90 READ/WRITE IRQ STATUS

bit 0 Rx Ready interrupt

bit 1 Tx Ready interrupt

bit 2 ACK from parallel interface
bit 3 Key scan

bits 4-7 Not used

‘When an interrupt occurs this port should be read to determine its source. The bit will
be set to 0 to identify the interrupting device. The interrupt can then be cleared by
writing 0 to that bit.

&A0 READ ONLY MEMORY CARD/BATTERY STATUS

bit 0 Parallel interface ACK: 1 if ACK

bit 1 Parallel interface BUSY: 0 if busy

bit 2 Lithium battery: 1 if less than 2.7 Volts

bit 3 Alkaline batteries: 1 if less than 3.2 Volts. (Although tests show this may
be nearer to 4.2 volts in practice).

156 The Amstrad Notepad

bit4 RAM card battery: 1 if battery is OK
bit 5 Mains Adaptor: 1 if less than 4 Volts
bit 6 Card write protected: 1 = yes, 0 = no
bit 7 Memory card present: 0 = yes, 1 = no

&B0-&B9 READ ONLY KEYBOARD DATA
Each key of the 64 on the keyboard will set a bit in one of these bytes while pressed.

The gate array scans the keyboard every 10mS and then generates an interrupt. The
program should then read these 10 I/O locations to determine which key has been
pushed. When 1/O address &B9 is read the key scan interrupt is cleared automatically
and the next scan cycle will start from &BO0.

&Co READ/WRITE UART CONTROL/DATA

&CO UART data register
&C1 UART status/control register

The UART is the NEC uPD71051. Programmers are advised to study the data sheet
for that chip for more information. The Serial interface requires that the uPD4711 line
driver chip be tuned on by writing a 0 to bit 4 of I/O address &30. While turned on,
power consumption increases so this should only be done when necessary. Calling
PADINITSERIAL (&B85A) first will ensure no bytes are lost when writing.

&D0 READ/WRITE REAL TIME CLOCK CHIP (TM8521)
&D0-&DC Data

&DD Control register

&DE Control register (Write only)

&DF Control register (Write only)

See the chip data sheet for more information.

THE JUMPBLOCK ENTRIES

E'fmu .RAP

4
EIBAS
UI P.RAP 4

4

ThePie

The result of calling SELECTFILE (&B8C3)

e

Most of the following routines return with the carry flag set if successful and, unless
otherwise stated, you should assume that AF is corrupt on return and that other
registers are preserved.

‘Where you see All registers preserved this includes the flags, but NOT the alternate
registers. In fact the altemate register contents can NEVER be assumed to be
preserved as they are used as scratch registers in time-critical routines.

To use any one of these routines just load the registers as described and then call the
relevant address. Although the running of a routine may involve a different ROM
bank being switched in, this mechanism is invisible to the caller. So, for example, to
print a capital A you could use the following (pretty useless, but explanatory)
example:

10 cLs

20 txtoutput=sB833

30 FOR pass=0 TO 3 STEP 3
40 [

50 OPT pass

60 LD A,ASC("A")

70 CALL txtoutput

80 RET

90]
100 NEXT

158 The Amstrad Notepad

KEYBOARD FUNCTIONS

EDITBUF - &B800

Action:
A line editor with options. A zero-terminated string may be passed in buffer (HL).
This will display the initial contents.

Entry conditions:
HL: Pointer to input buffer

B: Size of buffer (excluding terminating zero)
A:
~ Up and down cursor keys terminate input
~ Input not echoed

- Delete trailing spaces

- Edit unless characters entered

— Dotty background (character 176)

Other bits must be set to zero.

Exit conditions:

[Stop] pressed

Empty string input

At least one character entered

Preserved

Last key token (or -1 if [Stop] used to terminate)

KMCHARRETURN - &B803

Action:
Returns a token to the keyboard buffer. This is useful for determining which token is
due next without removing it from the buffer, by first reading it and then returning it.

Entry conditions:
BC The token

Exit conditions:

All registers preserved
KMREADKBD - &B806
Action:

Gets a key token if there is one. It does not wait but checks put-back characters and
expands macros. It also returns tick event tokens, if enabled.

Advanced User Guide 159

Entry conditions:
None

Exit conditions:
c=1: BC=token (B=0 for simple character)
c=0: No key token available

KMSETEXPAND - &B809

Action:
Defines a macro string.

Entry conditions:
: Macro token (between 256 and 383)
HL: Points to new macro string (the first byte is the length, followed by the

string, which need not be zero terminated)

Exit conditions:
c=1 Macro defined successfully
c=0 Insufficient room in the buffer (The buffer size is user configurable)

KMSETTICKCOUNT - &B80C
Action:

Enables the ticker event. There are 100 ticks per second. When a ticker event occurs
a special value of 941 is returned by KMREADKBD (&B806).

Entry conditions:
HL: Number of ticks before first event
DE: Number of ticks between events

Exit conditions:
All registers preserved

KMWAITKBD - &B80F

Action:
Waits for a key token. It uses KMREADKBD (B806) and checks put-back characters
and expands macros. It also returns tick event tokens if enabled.

Entry conditions:
None

Exit conditions:
c=1: BC=Token (B=0 for a simple character)

160 The Amstrad Notepad

READBUF - &B812

Action:
A line editor. See also EDITBUF (&B800).

Entry conditions:
HL: Pointer to input buffer (empty)
B: Size of buffer (excluding terminating zero)

Exit conditions:

c=0 & z=1: [Stop] pressed

c=1 & z=1: Empty string input

c=1& z=0: At least one character entered

BC: Last key token (or -1 if [Stop] used to terminate)
HL: Preserved

TESTESCAPE - &B815

Action:

Tests whether an Escape key has been pressed (either [Stop] or [Function]). It waits
for a key if one is found in the keyboard buffer.

Entry conditions:
None

Exit conditions:

c=1: No Escape key in buffer, or

Escape key in buffer but [Stop] not pressed
c=0: Escape key in buffer and [Stop] then pressed
A: Preserved

SCREEN DISPLAY FUNCTIONS

COL1 - &B818
Action:

If the cursor is at the start of a line it does nothing, otherwise it moves the cursor to
the start of next line (within the current window).

Advanced User Guide 161

Entry conditions:
None

Exit conditions:
All registers preserved

COLITEXT - &B81B
Action:
The same as TEXTOUT (&B81E), but it calls COL1 (&B818) first.

Entry conditions:
None

Exit conditions:
All registers preserved

TEXTOUT - &BS1E
Action:
Displays a string.

Entry conditions:
HL: Pointer to a zero-terminated string.
‘WARNING - HL must not point into an upper ROM!

Exit conditions:
All registers preserved

TEXTOUTCOUNT - &B821

Action:
‘The same as TEXTOUT (&B81E), but returns a character count in B.

Entry conditions:
None

Exit conditions:
: Character count
TXTCLEARWINDOW - &B824

Action:
Clears the current window and moves the cursor to the top-left of it.

162 The Amstrad Notepad

Entry conditions:
None

Exit conditions:
All registers preserved

TXTCUROFF - &B827

Action;
Removes the cursor from the screen.

Entry conditions:
None

Exit conditions:
All registers preserved

TXTCURON - &B82A

Action:
Displays the cursor on the screen.

Entry conditions:
None

Exit conditions:
All registers preserved

TXTGETCURSOR - &B82D
Action:
Returns the cursor position.

Entry conditions:
None

Exit conditions:
g Column (between 0 and 79)

L: Row (between 0 and 7)
TXTGETWINDOW - &B830
Action:

Returns the window coordinates.

Advanced User Guide 163

Entry conditions:
None
Exit conditions:
H: Left column (between 0 and 79)
L: Top row (between 0 and 7)
D: Right column (between 0 and 79)
E: Bottom row (between 0 and 7)
c=0: Window is whole screen
c=1: A smaller window has been created
TXTOUTPUT - &B833
Action:
Displays a character or acts on a control code.
Entry conditions:
A: character:

A =T7: Beep

A = 10: Line Feed

A = 13: Carriage Return
All other values are displayed as a character (the same as the PC
character set)

Exit conditions:
All registers preserved
TXTSETCURSOR - &B836

Action:
Moves the cursor to a new position.

Entry conditions:
H: Column (between 0 and 79)
L: Row (between 0 and 7)
Exit conditions:

All registers preserved
TXTSETWINDOW - &B839

Action:
Defines a new window.

164 The Amstrad Notepad

Entry conditions:
i Left column (between 0 and 79)

L: Top row (between 0 and 7)
D: Right column (between 0 and 79)
E: Bottom row (between 0 and 7)

Exit conditions:
All registers preserved

TXTWRCHAR - &B83C

Action:
Displays a character. Control codes are also displayed as characters rather than being
acted upon.

Entry conditions:
4 Character. All values are displayed as per the PC character set.

Exit conditions:

All registers preserved

TXTBOLDOFF - &B83F

Action:

Resets the bold attribute. The next time text is written to the screen it will be without

this attribute.

Entry conditions:
None

Exit conditions:
All registers preserved

TXTBOLDON - &B842

Action:
Sets the bold attribute. The next time text is written to the screen it will be with this
attribute.

Entry conditions:
None

Exit conditions:

All registers preserved

Advanced User Guide 165

TXTINVERSEOFF - &B845

Action:
Resets the inverse attribute. The next time text is written to the screen it will be
without this attribute.

Entry conditions:
None

Exit conditions:
All registers preserved

TXTINVERSEON - &B848

Action:
Sets the inverse attribute. The next time text is written to the screen it will be with
this attribute.

Entry conditions:
None

Exit conditions:
All registers preserved

TXTUNDERLINEOFF - &B84B

Action:
Resets the underline attribute. The next time text is written to the screen it will be
without this attribute.

Entry conditions:
None

Exit conditions:
All registers preserved

TXTUNDERLINEON - &B84E

Action:
Sets the underline attribute. The next time text is written to the screen it will be with
this attribute.

Entry conditions:
None

Exit conditions:
All registers preserved

166 The Amstrad Notepad

PARALLEL AND SERIAL PORT FUNCTIONS

MCPRINTCHAR - &B851

Action:
Sends a character to the printer.

Entry conditions:
A: Character

Exit conditions:

c=1: Successful
c=0: Not sent
A: Preserved

MCREADYPRINTER - &B854

Action:
Tests whether the printer is ready.

Entry conditions:
None

Exit conditions:

c=0: Busy
c=l Ready
A: Preserved

MCSETPRINTER - &B857

Action:
Sets the printer type to be used by MCPRINTCHAR (&B851) and MCREADYPRIN-
TER (&B854).

Entry conditions:

A: Printer type:
0 = Parallel
1 = Serial

Exit conditions:
All registers preserved

Advanced User Guide 167

PADINITSERIAL - &B85A

Action:

Initialises the serial port using the global configured settings and turns on the UART
and 4711. To prolong battery life, do not call this until needed.

Entry conditions:
None

Exit conditions:
All registers preserved
PADINSERIAL - &B85D

Action:
Reads a character from the serial port.

Entry conditions:

None
Exit conditions:
c=l: Successful, A=character

c No character read

PADOUTPARALLEL - &B860

Action:
Sends a character to the parallel port.

Entry conditions:

Character
Exit conditions:
c=1: Successful
c: Not sent
A: Preserved

PADOUTSERIAL - &B863
Action:
Sends a character to the serial port.

Entry conditions:
A: Character

168 The Amstrad Notepad

Exit conditions:

c=1: Successful
c=0: Not sent
A: Preserved

PADREADYPARALLEL - &B866

Action:
Tests whether the parallel port is ready.
Entry conditions:
None
Exit conditions:

Busy
c=1: Ready
A: Preserved
PADREADYSERIAL - &B869
Action:

Tests whether the serial port is ready.

Entry conditions:
None

Exit conditions:

c=0: Busy
=1: Ready
A Preserved

PADRESETSERIAL - &B86C

Action:

Turns off the UART and 4711. To prolong battery life call this as soon as you have
finished using the serial port.

Entry conditions:

None

Exit conditions:
All registers preserved

Advanced User Guide

169

PADSERIALWAITING - &B86F

Action:
Tests whether there is a character waiting to be read from the serial port.

Entry conditions:
None

Exit conditions:
c=1: Character waiting
c=0: No character waiting

CLOCK FUNCTIONS

PADGETTICKER - &B872

Action:
Returns the address of a four-byte 100Hz ticker.

Entry conditions:
None

Exit conditions:
The address of the least significant byte (first of four)

PADGETTIME - &B875

Action:
Reads the time and date from the Real Time Clock.

Entry conditions:
HL: Points to a seven-byte buffer to use:
Exit conditions:
HL: Preserved. The buffer contains seven bytes of data:

byte 0 = year (low)

byte 1 = year (high)

byte 2 = month

byte 3 = date

byte 4 = hour

byte 5 = minute

byte 6 = second

170 The Amstrad Notepad

PADSETALARM - &B878

Action:
Sets the ALARM date and time (within the next month).

Entry conditions:
HL: Points to a three-byte data area:
byte 0 = date
byte 1 = hour
byte 2 = minute

Exit conditions:
All registers preserved

PADSETTIME - &B87B

Action:
Sets the Real Time Clock date and time.

Entry conditions:
Points to a seven-byte data arca:
byte 0 = year (low)
byte 1 = year (high)
byte 2 = month
byte 3 = date
byte 4 = hour
byte 5 = minute
byte 6 = second

Exit conditions:
All registers preserved

MEMORY ALLOCATION FUNCTIONS

HEAPADDRESS - &BS7E

Action:
Obtains the address of a memory block for a given memory handle.

Entry conditions:
Memory handle

Advanced User Guide 171

Exit conditions:
HL: Pointer to memory block

HEAPALLOC - &B881

Action:
Allocates a block of memory from the heap.

Entry conditions:

3 Number of bytes to allocate
Exit conditions:
HL=0: 0 if failed
HL<>0: Memory handle in the range 1 - 63

NOTE: HEAPADDRESS (&B87E) must be used to get a pointer to the memory
block Unless the block is locked with HEAPLOCK (&B887). HEAPADDRESS
(&B87E) must be called each time the memory block is used as it may have moved!

HEAPFREE - &B884

Action:
Frees a block of memory.

Entry conditions:
DE: Memory handle, reurned by HEAPALLOC (B881) or HEAPREALLOC (B88D)

Exit conditions:
: Preserved
BC: Preserved

NOTE: The memory handle passed must be a valid handle retumed by
HEAPALLOC (B881) or HEAPREALLOC (B88D). This is not validated.

HEAPLOCK - &B887

Action:
Locks or unlocks a memory block.

Entry conditions:

DE: Memory handle

BC=0: The block is locked. It will not be moved until unlocked so fixed
addresses can be used as pointers into the block

BC<>0: The block is unlocked

172 The Amstrad Notepad

HEAPMAXFREE - &B88A

Action:
Returns the largest block size that can be allocated.

Entry conditions:
None

Exit conditions:
HL: Largest free block size in bytes

HEAPREALLOC - &B88D

Action:
Changes the size of an allocated memory block.

Entry conditions:
DE: Memory handle
BC: New size for memory block

Exit conditions:
HL=0: Failed. The old block will not be freed but could have moved.
HL<0: Successful

NOTE: If the block is being expanded, it must be assumed that the base of the
memory block will be moved (even if the block cannot actually be expanded), so
HEAPADDRESS (&BS87E) must be called afterwards. If the block is being
contracted, the base will not move.

FILE I/O FUNCTIONS

FCLOSE - &B890
Action:

Closes a file.

Entry conditions:

DE: File handle

Exit conditions:
c=1: Successful
c=0: Failed

Advanced User Guide

173

FERASE - &B893

Action:

Erases a file.

Entry conditions:

HL: Zero-terminated filename
Exit conditions:

c=1: Successful

c=0: Error (file not found)
FINBLOCK - &B896

Action:

Reads a block from a file.

Entry conditions:

DE: File handle

HL: Buffer

BC: Number of bytes to read (greater than 0)
Exit conditions:

c=1: End of file not reached
c=0: Eof (or error?)

BC: Number of bytes read
HL: Address after last byte read
FINCHAR - &B899

Action:

Reads a byte from a file.

Entry conditions:

DE: File handle

Exit conditions:

c=1: Successful, A=character

c=0: A corrupt if end of file reached

Other registers preserved

FINDFIRST - &B89C

Action:

Finds the first file. SETDTA (&B8C6) must have been called first.

174 The Amstrad Notepad

Entry conditions:
None

Exit cundl!mns
No files

HL<0: HL points to a file info structure. The first item in the structure is the
filename, zero-terminated (up to 12 characters long), offset 13 is the
attribute byte — see FGETATTR (&B8CF) for further details on
attributes. Offsets 14 and 15 are the file size in bytes (low, high)

FINDNEXT - &B89F

Action:
Finds the next file. FINDFIRST (&B89C) must have been called first.

Entry conditions:
None

Exit conditions:
5 No more files
HL<>0: HL returns info as with FINDFIRST (&B89C)

FOPENIN - &B8A2

Action:
Opens a file for input.

Entry conditions:
Points to zero-terminated filename

Exit conditions:
c=1: Successful, DE=file handle
c=0: Failed (file not found), DE=Corrupt
A: Corrupt
Other registers preserved

FOPENOUT - &B8AS

Action:
Opens a file for output.

Entry conditions:
HL: Points to zero-terminated filename

Advanced User Guide 175

Exit conditions:
c=1: Successful, DE=file handle
c=0: Failed (out of memory/too many files/file exists), DE=Corrupt
A: Corrupt
Other registers preserved

FOPENUP - &B8AS8

Action:

Opens a file for input and output. The file must already exist.
Entry conditions:

HL: Points to zero-terminated filename

Exit conditions:

c=1: Successful, DE=file handle

c=0: File not found, DE=Corrupt

A: Corrupt

Other registers preserved

FOUTBLOCK - &B8AB

Action:
Writes a block to a file.

Entry conditions:

File handle
HL: Buffer
BC: Number of bytes to write (greater than 0)
Exit conditions:
c=1: Successful
c=0: Error
BC: Number of bytes written
HL: Address after last byte written

FOUTCHAR - &BSAE

Action:
Writes a byte to a file.

Entry conditions:
DE: File handle
A: Character

176

The Amstrad Notepad

Exit conditions:

c=1: Successful
c=0: A=Corrupt if end of file reached
Other registers preserved

FRENAME - &B8B1

Action:
Renames a file.

Entry conditions:
HL: Points to zero-terminated old filename
DE: Points to zero-terminated new filename

Exit conditions:
c: Successful
c=0: Error (file not found)

FSEEK - &B8B4

Action:
Moves the file pointer to a position within a file.

Entry conditions:
DE:

File handle
BC: Offset from start of file
Exit conditions:
c=1: Successful
c=0: Offset past end of file (pointer not changed)
FSIZE - &B8B7
Action:
Finds the size of a file.

Entry conditions:
HL: Points to zero-terminated filename

Exit conditions:
c=1: HL=size in bytes
c=0: Not found

Advanced User Guide 177

FSIZEHANDLE - &BSBA

Action:
Finds the size of an open file.

Entry conditions:
DE: File handle

Exit conditions:
Size in bytes
FTELL - &B8BD

Action:
Returns the value of the file pointer.

Entry conditions:
DE: File handle

Exit conditions:
Current file position
FTESTEOF - &B8C0

Action:
Tests whether the end of a file has been reached.

Entry conditions:

DE: File handle
Exit conditions:

c=l: Not eof
c=0: Eof

SELECTFILE - &B8C3

Action:

Displays the file selector (clearing the screen first), shows all files and allows a
selection to be made using the cursor keys and [Return). In addition [Del->] and
[<-Del] can be used to delete files.

An undocumented feature of this function is the ability to press [Shift][Ctrl][H] to
override the effect of the Hidden file attribute and make these files instantly visible.
See FGETATTR (&BSCF) for further details on attributes.

178 The Amstrad Notepad

Entry conditions:
None

Exit conditions:

c=1: A was file selected ([Return] pressed), HL=filename
c=0: [Stop] was pressed

SETDTA - &B8C6

Action:

Sets the memory block to be used by FINDFIRST (&B89C) and FINDNEXT
(&B89F).

Entry conditions:
DE: Address of a 36-byte buffer which must be in common RAM
(&8000h-&BFFF).

Exit conditions:

All registers preserved

MISCELLANEOUS FUNCTIONS

FDATESTAMP - &B8C9

Action:
Sets a file’s date and time to the current date and time.

Entry conditions:
: Zero terminated filename

Exit conditions:

c=1: Successful
c=0: File not found
FGETATTR - &B8CF
Action:

Returns the attribute byte of a file.

Advanced User Guide 179

Entry conditions:
HL: Zero-terminated filename

Exit conditions:
c=1: A=attribute

bit 0 = System (for in-built applications)
bit Hidden

Reserved for internal use
bit 6 = Reserved
bit 7 = Reserved

System files are generally those created by the Diary, Address Book and other in-built
applications. They are also generally saved as Hidden files except where the user
needs to be able to select them.

Protext saves all files without any attributes so that they can be seen and selected by
all applications. This allows you to write programs in Protext, then enter BBC Basic
and *EXEC them into memory — providing an easier way of editing code.

All BBC Basic programs are saved with the Basic attribute set.

If the user has not configured the NC100 to display file dates and times via the
System Setting menu, if a file has the Basic attribute set, under BBC Basic
SELECTFILE (&B8C3) will display it but if the Hidden attribute is set, it will not.
‘When not in BBC Basic, the Protext file selector will not display files with a Basic or
Hidden attribute, so you can hide selected files from non-BBC Basic applications.

However, if the user has elected to have file dates and times displayed, all files
except those with a Hidden attribute will be displayed whether in BBC Basic or not.

c=0: Not found
HL: Preserved

FSETATTR - &B8CC

Action:
Sets the attribute byte for a file opened for output. If the file is open for input only
there is no effect

Entry conditions:
DE: File handle
G Auribute byte:

180 The Amstrad Notepad

Exit conditions:

c=1: Successful

c=0: File not found
KMGETYELLOW - &B8D2
Action:

Ascertains whether a Yellow event (so called because the [Function] key is coloured
yellow) is pending. A Yellow event occurs:

Q When the user has pressed one of the [Function][Key] combinations that cause an
immediate context switch ([Function](Red], [Functi Sreen], [Function][Blue]
[Function][Menu]), or

Q When the machine is powered up and (because the option to preserve context has
not been set) needs to return to the main menu.

Entry conditions:
None

Exit conditions:

c=1: BC=token if a Yellow event is pending. An application should exit
conditions: normally as quickly as possible Any unsaved files should be
saved automatically!

c=0: BC=0 if no Yellow event is pending

NOTE: Each of the yellow event keys return the [Stop] token (&2FCh). An
application should call KMGETYELLOW (&B8D2) whenever an Escape key is read.
This distinguishes between a Yellow event and an ordinary Escape.

KMSETYELLOW - &B8D5

Action:
Sets up a Yellow event. Specialised use only.

Entry conditions:
¥ A yellow event token

Exit conditions:
All registers preserved

LAPCAT_RECEIVE - &B8D8

Action:
Reads a character from the parallel port using Lapcat protocol.

Advanced User Guide

181

Entry conditions:
None

Exit conditions:

c=1: Successful, A=character
c=0: No character read

LAPCAT_SEND - &B8DB

Action:

Sends a character to the parallel port using Lapcat protocol.
Entry conditions:
A: Character
Exit conditions:

c=1: Successful
c=0: Error

PADGETVERSION - &BSDE
Action:
Gets the firmware version number.

Entry conditions:
None

Exit conditions:
HL: Version number (times 100). So, 1.03 retuns 103

S}

THE SYSTEM VARIABLES

T

Poke &B139 with 0 in Basic and lose the file sizes

Following are some of the more important RAM-based variables used by the
operating system. Amstrad have expressed an intent always to try and use these
locations in subsequent versions of the software, but they are not guaranteeing it. It
would be sensible to perform checks by calling firmware routines which return known
values to selected addresses and only if the correct values are returned for addresses
you wish to use, should you then assume they are available to you.

Alternatively you could contact Amstrad at the following address with any queries
relating to newer versions of the NC series. Write to:

Notepad Project Manager, Amstrad Plc, 169 Kings Road,
Brentwood, Essex, CM14 4EF.

Many of the addresses shown in this section have little or no explanation other than
the name given to them by the program developers. It is entirely up to you to
experiment with them and come to your own decision as to their usefulness.
Thankfully though, many addresses are fully self-evident and will provide you with a
lot of scope for enhancing your own programs.

Advanced User Guide

183

ADDRESS NAME

&B000
&B001
&B002
&B003
&B03B

&B08D

&B097
&B0A1
&BOE1
&BOE2
&BOE3
&BOE4
&BOE6
&BOE8
&B112
&B113
&B114
&B115
&B116
&B12C
&B12D

&B132
&B133
&B134
&B137
&B138

&B139

&BI13A
&B13D

&B140

copyofmmu0
copyofmmul
copyofmmu2
copyofmmu3

kbdstatel

kbdstate2
padkeybuf
padnextin
padnextout
padbufempty
lastkbdstate
thiskbdstate
caps.state
rptdelay
rptrate
pttimer
keytorepeat
ptkeystates
soundcounter
soundptr

poweroffminutes
minutesleft
minutecounter
preservecontext
dontpreservecontext

mainprog

currentprinter
wasmenusel

sdumpname

SIZE
&01
&01
&01
&01
&50

&0A

&0A
&40
&01
&01
&01
&02
&02
&01
&01
&01
&01
&01

&01
&02

&01
&01

&01
&01

&01

&01
&01

&04

COMMENTS

Copy of MMUO

Copy of MMU1

Copy of MMU2

Copy of MMU3

A small stack which is only used in
initialisation. Therefore, you should
be able to use this as a temporary
storage area when code space is
tight.

1 bit per key: 1=down, O=up to
correspond to the matrix.

2nd byte of state

Keyboard buffer

Offset into padkeybuf.

Next character due out

Non-zero if empty.

Saved state

This state

0=off, &FF=on

Keyboard repeat Centiseconds.
Keyboard delay Centiseconds.
Count down timer for key repeat.
Key number.

Shift states.

Non-zero if playing a tune.
Pointer to array of frequency,
duration.

Configured time to power off.
Minutes left

Minute counter

O=return to main screen at power on.
1=don’t preserve (diagnostics/
battery).

6=inbasic, 128=inexternal
(foreground program id).

0 for parallel, 1 for serial.

After KMWAITCHAR this is 1 if
menu used, 0 if not.

File names s.a, s.b, s.c and so on -
for screen dumps.

184 The Amstrad Notepad

&B150 d.datebuf &12 Date buffer

&B162 d.asciitime &0C hh:mm:ss

&B16E currentcfg &4C Current configuration parameters

&B1BD g.pos &01 Current column number (charout).

&B258 d.calcmode &01 Non-zero if keyboard in calculator
mode.

&B259 d.kmexplen &01 Expansion string length.

&B25A d.kmexpptr &02 Expansion string pointer.

&B25C d.expbuffer &02 Address of expansion key buffer.

&B25E d.expbufptr &02 Pointer to free byte.

&B260 d.expbufend &02 Last byte in buffer.

&B2A1 macro_buf &100 Macro buffer

&B3A7 - File selector variables...

&B3A7 fs_clicat &01 Non-zero if Cat command, not
Select.

&B3A8 fs_showsizes &01 Non-zero if showing file sizes (pad
default=off).

&B3A9 fs_showsys &01 Non-zero if showing system files.

&B3AA fs_curfile &01 Current file number offset from top
left.

&B3AB fs_toplefifile &01 File number displayed top left.

&B3AC fs_numcols &01 Number of columns

&B3AD fs_colwidth &01 ‘Width of columns

&B3AE fs_numshown &01 Number of columns shown

&B3AF fs_maxfiles &01 Max files that can be shown.

&B3B2 fs_numfilerows &01 Rows of files in CAT command.

&B3B3 fs_startlist &02 Start of file list. Zero if doing
unsorted list.

&B3BS5 fs_startdir &02 Start of directory entries.

&B3B9 fs_numfiles &01 Number of files in directory.

&B3BA fs_lastshown &01 Last file number currently shown.

Advanced User Guide 185

BBC BASIC MAIN SYSTEM VARIABLES

ADDRESS SIZE COMMENTS
&A000 &100 String accumulator
&A100 &100 String input buffer
&A200 &6C Static variables @% to Z%
&A2DC &02 PAGE

&A2DE &02 TOP

&A2E0 &02 LOMEM

&A2E2 &02 Free space pointer
&A2E4A &02 HIMEM

&A2E6 &02 Current line number
&A2ER &02 TRACE number
&AZEA &02 AUTO number

&A2EC &02 ON ERROR number

RECOVERING FROM
LOCK-0OUTS

If you use the Notepad’s BBC Basic assembler facilities you are likely to crash the
computer at some point. What usually happens in a crash is you get a complete
lock-out and even turning the computer off and on just results in a blank (or
sometimes black) screen.

Sometimes you can get out of crashes quite quickly and easily by switching off the
Notepad and holding down the [Function] and (Stop] keys while you switch it on
again. However, it does have the effect of completely resetting various settings you
may have set up, such as Preserve Context or Document Transfer, although the time
and date are unaffected.

Unfortunately, there is nothing you can do other than press the [Menu] key and
re-enter your preferred defaults. If this doesn’t work you may find that the
documented reset facility may do so — try switching off, pressing [Function](Stop]
[<-Del] and switching on again while holding these keys down. If it does get you out
of a lock-up and back into the system, this reset will have entirely erased any files or
data held in the Notepad, although all data on any RAM card you may have inserted
will remain untouched.

Occasionally a bug may have a peculiar effect that the [Function][Stop] procedure
does appear to remedy, in that it returns you to the front menu, but you then find you
cannot re-enter Basic by pressing [Function](B] because the screen goes completely
blank and nothing happens. However, you may be able to get around this by

switching the Notepad on and off yet again and then pressing [Function](B] one more
time.

Unfortunately, resetting the Notepad is not always as easy as this because some
crashes appear to lock up the Notepad completely so that no combination of key
presses or reset commands will restore it. In this eventuality you have no recourse

Advanced User Guide 187

other than to remove the four AA batteries, disconnect the power supply lead and
remove the small lithium battery and any RAM card you may have inserted.

Having done this you should press the on/off switch repeatedly for a minute or two in
order to drain any residual power which may be left in the Notepad. Now re-insert all
the batteries, power lead and any RAM card you may be using, and switch on. You
should then have a fully-functional NC100 again. Remember that this procedure
completely erases all data from your computer, including addresses, diary entries and
anything you may have stored in the Private area.

A strong word of caution: If you develop any programs yourself or type in any of the
listings from this book, it is quite likely that you will introduce one or more bugs and
consequently may get a crash that causes you to lose all the data stored in the NC100.
Therefore it is very important that you first transfer any programs or documents you
need to keep, to another computer using the Lapcat communications lead and
software. It’s available from Amor, the NC100’s developers (see Appendix 6 for full
details). In fact, you would be well advised to regularly back up important files in any
event.

But more than that, if you don’t have one, you should strongly consider buying a
RAM card. These come in sizes from 32Kb up to IMb and are essential if you wish
to store more than one or two programs or documents at a time. In addition, if you
happen to crash the NC100, files stored on the RAM card will almost certainly not be
destroyed and, after resetting the computer, you can re-insert the RAM card and start
using the stored files immediately.

Page 47 of the NC100 user guide offers further information, including how to format
a new RAM card ready for use. The Lapcat communications lead and software and
RAM cards for the NC100 (compatible with the industry standard) are available from
Amor (see Appendix 6).

THE COMPLETE Z80
INSTRUCTION SET

ADC A,(HL)

ADC A (IX+d)

ADC A,(IY+d)

ADCAA
ADC A,B
ADCAC
ADC AD
ADC AE
ADC AH
ADCAL
ADC An

ADC HL,BC

The contents of the address pointed to by HL and the carry flag are
both added to the contents of A, and the result is then stored in A.

The contents of the address pointed to by IX plus displacement d
and the carry flag are both added to the contents of A, and the
result is then stored in A.
The contents of the address pointed to by IY plus displacement d
and the carry flag are both added to the contents of A, and the
result is then stored in A.

The contents of A and the carry flag are added to A, and the result
is stored in A.

The contents of B and the carry flag are added to A, and the result
is stored in A.

The contents of C and the carry flag are added to A, and the result
is stored in

The contents of D and the carry flag are added to A, and the result
is stored in A.

The contents of E and the carry flag are added to A, and the result
is stored in A.

The contents of H and the carry flag are added to A, and the result
is stored in A.

The contents of L and the carry flag are added to A, and the result
is stored in A.

The value n and the carry flag are added to A, and the result is
stored in A.

The contents of HL and the carry flag are added to BC, and the
result is stored in HL.

Advanced User Guide 189

ADC HL,DE
ADC HL,HL
ADC HL,SP
ADD A,(HL)
ADD A (IX+d)
ADD A,(IY+d)

ADD AA
ADD AB
ADD AC
ADD AD
ADD AE
ADD AH
ADD AL
ADD A
ADD HL,BC
ADD HL,DE
ADD HLHL
ADD HL,SP
ADD IX,BC
ADD IX,DE
ADD IX,IX
ADD IX,SP
ADDIY,BC
ADD 1Y, DE
ADD IY,IY
ADD IY,SP
AND (HL)

The contents of HL and the carry flag are added to DE, and the
result is stored in HL.

The contents of HL and the carry flag are added to HL, and the
result is stored in HL.

The contents of HL and the carry flag are added to SP, and the
result is stored in HL.

The contents of the address pointed to by HL are added to A, and
the result is stored in A.

The contents of the address pointed to by IX plus displacement d
are added to A, and the result is stored in A.

The contents of the address pointed to by IY plus displacement d
are added to A, and the result is stored in A.

The contents of A are added to A, and the result is stored in A.

The contents of A are added to B, and the result is stored in A.

The contents of A are added to C, and the result is stored in A.

The contents of A are added to D, and the result is stored in A.

The contents of A are added to E, and the result is stored in A.

The contents of A are added to H, and the result is stored in A.
The contents of A are added to L, and the result is stored in A.

The value n is added to A, and the result is stored in A.

The contents of HL are added to BC, and the result is stored in HL.
The contents of HL are added to DE, and the result is stored in HL.
The contents of HL are added to HL, and the result is stored in HL.
The contents of HL are added to SP, and the result is stored in HL.
The contents of IX are added to BC, and the result is stored in IX.
The contents of IX are added to DE, and the result is stored in IX.
‘The contents of IX are added to IX, and the result is stored in IX.
The contents of IX are added to SP, and the result is stored in IX.
The contents of IY are added to BC, and the result is stored in IY.
The contents of 1Y are added to DE, and the result is stored in IY.
The contents of IY are added to IY, and the result is stored in IY.
The contents of IY are added to SP, and the result is stored in IY.

The contents of the address pointed to by HL is logically ANDed
with A, and the result is stored in A.

190 The Amstrad Notepad

AND (IX+d) The contents of the address pointed to by IX plus displacement d is
logically ANDed with A, and the result is stored in A.

AND (IY+d) The contents of the address pointed to by IY plus displacement d is
logically ANDed with A, and the result is stored in A.

AND A A is logically ANDed with A, and the result is stored in A.
AND B B is logically ANDed with A, and the result is stored in A.
AND C C is logically ANDed with A, and the result is stored in A.
AND D D is logically ANDed with A, and the result is stored in A.
AND E E is logically ANDed with A, and the result is stored in A.
AND H H is logically ANDed with A, and the result is stored in A.
AND L L is logically ANDed with A, and the result is stored in A.
AND n ;I\'he value n is logically ANDed with A, and the result is stored in

BIT 0,(HL) Bit 0 of the contents of the location pointed to by HL is tested. The
Z flag returns its state.

BIT 0,(IX+d) Bit 0 of the contents of the location pointed to by IX plus
displacement d is tested. The Z flag returns its state.

BIT 0,aY+d) Bit 0 of the contents of the location pointed to by IY plus
displacement d is tested. The Z flag returns its state.

BIT 0,A Bit 0 of A is tested. The Z flag returns its state.
BIT 0,B Bit 0 of B is tested. The Z flag returns its state.
BIT0,C Bit 0 of C is tested. The Z flag returns its state.
BIT 0,D Bit 0 of D is tested. The Z flag returns its state.
BIT0E Bit 0 of E is tested. The Z flag returns its state.
BIT 0,H Bit 0 of H is tested. The Z flag returns its state.
BITOL Bit 0 of L is tested. The Z flag returns its state.

BIT 1,(HL) Bit 1 of the contents of the location pointed to by HL is tested. The
Z flag returns its state.

BIT 1,(IX+d) Bit 1 of the contents of the location pointed to by IX plus
displacement d is tested. The Z flag returns its state.

BIT 1,IY+d) Bit 1 of the contents of the location pointed to by IY plus
displacement d is tested. The Z flag returns its state.

BIT 1,A Bit 1 of A is tested. The Z flag returns its state.
BIT 1,B Bit 1 of B is tested. The Z flag returns its state.
BIT 1,C Bit 1 of C is tested. The Z flag retumns its state.

Advanced User Guide 191

BIT 1,0
BIT 1E
BIT 1LH
BIT 1L
BIT 2,(HL)

BIT 2,(IX+d)
BIT 2,(1Y+d)

BIT 2,A
BIT 2,B
BIT 2,C
BIT2D
BIT2E
BIT 2H
BIT 2L
BIT 3,(HL)

BIT 3,(IX+d)
BIT 3,(Y+d)

BIT3A
BIT 3,B
BIT3,C
BIT 3D
BIT3E
BIT3H
BIT3L
BIT 4,(HL)

BIT 4,(IX+d)

Bit 1 of D is tested. The Z flag returns its state.
Bit 1 of E is tested. The Z flag returns its state.
Bit 1 of H is tested. The Z flag returns its state.
Bit 1 of L is tested. The Z flag returns its state.

Bit 2 of the contents of the location pointed to by HL is tested. The
Z flag returns its state.

Bit 2 of the contents of the location pointed to by IX plus
displacement d is tested. The Z flag returns its state.

Bit 2 of the contents of the location pointed to by IY plus
displacement d is tested. The Z flag returns its state.

Bit 2 of A is tested. The Z flag returns its state.
Bit 2 of B is tested. The Z flag returns its state.
Bit 2 of C is tested. The Z flag returns its state.
Bit 2 of D is tested. The Z flag returns its state.
Bit 2 of E is tested. The Z flag returns its state.
Bit 2 of H is tested. The Z flag returns its state.
Bit 2 of L is tested. The Z flag returns its state.

Bit 3 of the contents of the location pointed to by HL is tested. The
Z flag returns its state.

Bit 3 of the contents of the location pointed to by IX plus
displacement d is tested. The Z flag returns its state.

Bit 3 of the contents of the location pointed to by IY plus
displacement d is tested. The Z flag returns its state.

Bit 3 of A is tested. The Z flag returns its state.
Bit 3 of B is tested. The Z flag returns its state.
Bit 3 of C is tested. The Z flag returns its state.
Bit 3 of D is tested. The Z flag returns its state.
Bit 3 of E is tested. The Z flag returns its state.
Bit 3 of H is tested. The Z flag returns its state.
Bit 3 of L is tested. The Z flag returns its state.

Bit 4 of the contents of the location pointed to by HL is tested. The
Z flag returns its state.

Bit 4 of the contents of the location pointed to by IX plus
displacement d is tested. The Z flag returns its state.

192 The Amstrad Notepad

BIT 4,(IY+d) Bit 4 of the contents of the location pointed to by IY plus
displacement d is tested. The Z flag returns its state.

BIT 4,A Bit 4 of A is tested. The Z flag returns its state.
BIT4,B Bit 4 of B is tested. The Z flag returns its state.
BIT 4,C Bit 4 of C is tested. The Z flag returns its state.
BIT 4D Bit 4 of D is tested. The Z flag returns its state.
BIT4E Bit 4 of E is tested. The Z flag returns its state.
BIT4H Bit 4 of H is tested. The Z flag returns its state.
BIT4L Bit 4 of L is tested. The Z flag returns its state.

BIT 5,(HL) Bit 5 of the contents of the location pointed to by HL is tested. The
Z flag returns its state.

BIT 5,0X+d) Bit 5 of the contents of the location pointed to by IX plus
displacement d is tested. The Z flag returns its state.

BIT 5,(IY+d) Bit 5 of the contents of the location pointed to by IY plus
displacement d is tested. The Z flag returns its state.

BIT 5,A Bit 5 of A is tested. The Z flag returns its state.
BIT 5,B Bit 5 of B is tested. The Z flag returns its state.
BIT 5,C Bit 5 of C is tested. The Z flag returns its state.
BIT 5D Bit 5 of D is tested. The Z flag returns its state.
BIT5E Bit 5 of E is tested. The Z flag returns its state.
BIT 5H Bit 5 of H is tested. The Z flag returns its state.
BIT 5L Bit 5 of L is tested. The Z flag returns its state.

BIT 6,(HL) Bit 6 of the contents of the location pointed to by HL is tested. The
Z flag returns its state.

BIT 6,(IX+d) Bit 6 of the contents of the location pointed to by IX plus
displacement d is tested. The Z flag returns its state.

BIT 6,(IY+d) Bit 6 of the contents of the location pointed to by IY plus
displacement d is tested. The Z flag returns its state.

BIT6,A Bit 6 of A is tested. The Z flag returns its state.
BIT 6,B Bit 6 of B is tested. The Z flag returns its state.
BIT 6,C Bit 6 of C is tested. The Z flag returns its state.
BIT 6,D Bit 6 of D is tested. The Z flag returns its state.
BIT 6,E Bit 6 of E is tested. The Z flag returns its state.
BIT 6, H Bit 6 of H is tested. The Z flag returns its state.

BIT 6,L Bit 6 of L is tested. The Z flag returns its state.

Advanced User Guide 193

BIT 7,(HL)
BIT 7,(IX+d)
BIT 7,(Y+d)

BIT7,A
BIT7,B
BIT 7,C
BIT 7D
BIT 7.E
BIT 7H
BIT 7L
CALL C,nn

CALL M,nn

CALL NC,nn

CALL NZ,nn

CALL P,nn

CALL PE,nn

CALL PO,nn

Bit 7 of the contents of the location pointed to by HL is tested. The
Z flag returns its state.

Bit 7 of the contents of the location pointed to by IX plus
displacement d is tested. The Z flag returns its state.

Bit 7 of the contents of the location pointed to by IY plus
displacement d is tested. The Z flag returns its state.

Bit 7 of A is tested. The Z flag returns its state.
Bit 7 of B is tested. The Z flag returns its state.
Bit 7 of C is tested. The Z flag returns its state.
Bit 7 of D is tested. The Z flag returns its state.
Bit 7 of E is tested. The Z flag returns its state.
Bit 7 of H is tested. The Z flag returns its state.
Bit 7 of L is tested. The Z flag returns its state.

If C (Carry) is set then push the current contents of the program
counter onto the stack and call the routine at location nn. When the
routine returns using a RET it comes straight back by popping the
correct return address off the stack.

If M (Minus) is set then push the current contents of the program
counter onto the stack and call the routine at location nn. When the
routine returns using a RET it comes straight back by popping the
correct return address off the stack.

If C is not set (No Carry) then push the current contents of the
program counter onto the stack and call the routine at location nn.
‘When the routine returns using a RET it comes straight back by
popping the correct return address off the stack.

If Z is not set (Not Zero) then push the current contents of the
program counter onto the stack and call the routine at location nn.
When the routine returns using a RET it comes straight back by
popping the correct return address off the stack.

If P (Plus) is set then push the current contents of the program
counter onto the stack and call the routine at location nn. When the
routine returns using a RET it comes straight back by popping the
correct return address off the stack.

If PE (Even) is set then push the current contents of the program
counter onto the stack and call the routine at location nn. When the
routine returns using a RET it comes straight back by popping the
correct return address off the stack.

If PO (Odd) is set then push the current contents of the program
counter onto the stack and call the routine at location nn. When the
routine returns using a RET it comes straight back by popping the
correct return address off the stack.

The Amstrad Notepad

CALL Z,nn

CALL nn

CCF
CP (HL)

CP (IX+d)

CP (IY+d)

CPA
CPB
CcPC
CPD
CPE
CPH
CPL
CPn

CPD

CPDR

If Z (Zero) is set then push the current contents of the program
counter onto the stack and call the routine at location nn. When the
routine returns using a RET it comes straight back by popping the
correct return address off the stack.

Immediately push the current contents of the program counter onto
the stack and call the routine at location nn. When the routine
returns using a RET it comes straight back by popping the correct
return address off the stack.

Complement the C (Carry). If it is 1 it becomes 0, or vice versa.

The contents of the location pointed to by HL are subtracted from
A and the result is discarded. The flags are then set according to the
result.

The contents of the location pointed to IX plus displacement d are
subtracted from A and the result is discarded. The flags are then set
according to the result.

The contents of the location pointed to by IY plus displacement d
are subtracted from A and the result is discarded. The flags are then
set according to the result.

The contents of A are subtracted from A and the result is discarded.
The flags are then set according to the result.
The contents of B are subtracted from A and the result is discarded.
The flags are then set according to the result.

The contents of C are subtracted from A and the result is discarded.
The flags are then set according to the result.

The contents of D are subtracted from A and the result is discarded.
The flags are then set according to the result.

The contents of E are subtracted from A and the result is discarded.
The flags are then set according to the result.

The contents of H are subtracted from A and the result is discarded.
The flags are then set according to the result.
The contents of L are subtracted from A and the result is discarded.
The flags are then set according to the result.

The value n are subtracted from A and the result is discarded. The
flags are then set according to the result.

The contents of the location pointed to by HL are subtracted from
A and the result is discarded. Then both HL and BC are
decremented. The flags are then set according to the result.

The contents of the location pointed to by HL are subtracted from
A and the result is discarded. Then both HL and BC are
decremented. This instruction then repeats until BC equals 0 or A is
the same as the contents of the location pointed to by HL.

Advanced User Guide 195

CPI

CPIR

CPL
DAA

DEC (HL)
DEC (IX+d)

DEC (IY+d)

DEC A
DECB
DEC BC
DECC
DEC D
DEC DE
DECE
DEC H
DEC HL
DEC IX
DECIY
DECL
DEC SP
DI
DINZe

EI
EX (SP),HL
EX (SP),IX

The contents of the location pointed to by HL are subtracted from
A and the result is discarded. Then HL is incremented and BC is
decremented. The flags are then set according to the result.

The contents of the location pointed to by HL are subtracted from
A and the result is discarded. This instruction then repeats until BC
equals O or A is the same as the contents of the location pointed to
by HL.

‘The contents of A are complemented. All 0 bits become 1s and vice
versa.

Conditionally adds 6 to the right and/or left nibble of a, based on
the status register for BCD conversion after maths operations.

Decrement the contents of the location pointed to by HL.

Decrement the contents of the location pointed to by IX plus
displacement d.

Decrement the contents of the location pointed to by IY plus
displacement d.

Decrement A.
Decrement B.
Decrement BC.
Decrement C.
Decrement D.
Decrement DE.
Decrement E.
Decrement H.
Decrement HL.
Decrement IX.
Decrement IY.
Decrement L.
Decrement SP.
Disable all maskable interrupts.

B is decremented. If the result is not zero then execution jumps to
location e. The new location must be within 126 bytes before and
129 bytes following the current location as this is a relative branch.

Enable all maskable interrupts.
Exchange the contents of the address pointed to by SP with HL.
Exchange the contents of the address pointed to by SP with IX.

196

The Amstrad Notepad

EX (SP),IY
EX AFAF’
EX DEHL
EXX

HALT

™Mo

M1

M2

IN A,(n)
IN AC)
IN B,(C)
INC,©)
IN D(C)
INE(C)
INH,(C)
INL,(C)

INC (HL)
INC (IX+d)

INC (IY+d)

INCA

Exchange the contents of the address pointed to by SP with IY.
Exchange AF with its alternate AF’ register pair.

Swap the contents of DE and HL.

Exchange, BC, DE and HL with the alternate BC’, DE’ and HL’
register pairs.

Suspend operation and execute NOPs until and interrupt or reset is
received.

Set interrupt mode 0 in which the interrupting device may insert
one instruction onto the bus for execution, the first byte of which
must occur during the interrupt acknowledge cycle,

Set interrupt mode 1. A RST &38 instruction will be executed
when an interrupt occurs.

Set interrupt mode. When an interrupt occurs one byte of data must
be provided by the peripheral, which is used as a low-order address.
The high order address is taken from the I register. This points to a
second address in memory which is loaded into the program
counter and executed.

Load A with a byte from port (n). A supplies bits 8 to 15 of the
port address, while n provides 0 to 7.

Load A with a byte from port (C). B must contain bits 8 to 15 of
the port address, while C contains 0 to 7.

Load B with a byte from port (C). B must contain bits 8 to 15 of
the port address, while C contains 0 to 7.

Load C with a byte from port (C). B must contain bits 8 to 15 of
the port address, while C contains 0 to 7.

Load D with a byte from port (C). B must contain bits 8 to 15 of
the port address, while C contains 0 to 7.

Load E with a byte from port (C). B must contain bits 8 to 15 of
the port address, while C contains 0 to 7.

Load H with a byte from port (C). B must contain bits 8 to 15 of
the port address, while C contains 0 to 7.

Load L with a byte from port (C). B must contain bits 8 to 15 of
the port address, while C contains 0 to 7.

Increment the contents of the location pointed to by HL.

Increment the contents of the location pointed to by IX plus
displacement d.

Increment the contents of the location pointed to by IY plus
displacement d.

Increment A.

Advanced User Guide 197

INCB
INCBC
INCC
INCD
INC DE
INCE
INCH
INC HL
INC IX
INCIY
INCL
INC SP

INDR

JP nn

JP (HL)
P (IX)
JP (IY)
JP C,nn
JP M,nn
JP NC,nn
JP NZ,nn
JP P,an
JP PE,nn
JP PO,nn
JP Z,nn

Increment B.
Increment BC.
Increment C.
Increment D.
Increment DE.
Increment E.
Increment H.
Increment HL.
Increment IX.
Increment IY.
Increment L.
Increment SP.

The device addressed by C is read into the memory location
pointed to by HL. Then both B and HL are decremented.

The device addressed by C is read into the memory location
pointed to by HL. Then both B and HL are decremented. This
repeats until B equals 0.

The device addressed by C is read lnlo l.he memory location
pointed to by HL. Then B is

The device addressed by C is read into the memory location
pointed to by HL. Then B is and HL is
This repeats until B equals 0.

Jump directly to location nn.

Jump directly to the location pointed to by the contents of HL.
Jump directly to the location pointed to by the contents of IX.
Jump directly to the location pointed to by the contents of IY.
If C (Carry) is set, jump to nn.

If M (Minus) is set, jump to nn.

If C is not set (No Carry), jump to nn.

If Z is not set (Not Zero), jump to nn.

If P (Plus) is set, jump to nn.

If PE (Even) is set, jump to nn.

If PO (Odd) is set, jump to nn.

If Z (Zero) is set, jump to nn.

198

The Amstrad Notepad

JRCe
JRNCe

JRZe
JRe

LD (BC)A
LD (DE)A
LD (HL)A
LD (HL),B
LD (HL),.C
LD (HL).D
LD (HL).E
LD (HL),H
LD (HL),L
LD (HL),n
LD (IX+d)A

LD (IX+d),B
LD (IX+d).C
LD (IX+d).D
LD (IX+d).E
LD (IX+d).H
LD (x+d).L

LD (IX+d),n

If C (Carry) is set, jump relatively to e.

If C is not set (No Carry), jump relatively to e. The new location
must be within 126 bytes before and 129 bytes after the current
location.

If Z is not set (Not Zero), jump relatively to e. The new location
must be within 126 bytes before and 129 bytes after the current
location.

If Z (Zero) is set, jump relatively to e. The new location must be
within 126 bytes before and 129 bytes after the current location.

Jump relatively to e. The new location must be within 126 bytes
before and 129 bytes after the current location.

Load the location pointed to by BC with the value stored in A.
Load the location pointed to by DE with the value stored in A.
Load the location pointed to by HL with the value stored in A.
Load the location pointed to by HL with the value stored in B.
Load the location pointed to by HL with the value stored in C.
Load the location pointed to by HL with the value stored in D.
Load the location pointed to by HL with the value stored in E.
Load the location pointed to by HL with the value stored in H.
Load the location pointed to by HL with the value stored in L.
Load the location pointed to by HL with the value n.

Load the location pointed to by IX plus displacement d with the
value stored in A.
Load the location pointed to by IX plus displacement d with the
value stored in B.
Load the location pointed to by IX plus displacement d with the
value stored in C.
Load the location pointed to by IX plus displacement d with the
value stored in D.
Load the location pointed to by IX plus displacement d with the
value stored in E.
Load the location pointed to by IX plus displacement d with the
value stored in H.
Load the location pointed to by IX plus displacement d with the
value stored in L.

Load the location pointed to by IX plus displacement d with the
value n.

Advanced User Guide 199

LD (IY+d),A
LD (IY+d),B
LD (IY+d),C
LD (IY+d).D
LD (IY+d)E
LD (IY+d)H
LD (Y+d).L
LD (Y+d),n

LD (nn), A
LD (nn),BC

LD (nn),DE
LD (nn),HL
LD (nn),IX
LD (nn),IY
LD (nn),SP

LD A,(BC)
LD A,(DE)
LD A,(HL)
LD A,(X+d)

LD A,(IY+d)

LD A,(nn)
LD AA

Load the location pointed to by IY plus displacement d with the
value stored in A.

Load the location pointed to by IY plus displacement d with the
value stored in B.

Load the location pointed to by IY plus displacement d with the
value stored in C.

Load the location pointed to by IY plus displacement d with the
value stored in D.

Load the location pointed to by IY plus displacement d with the
value stored in E.

Load the location pointed to by IY plus displacement d with the
value stored in H.

Load the location pointed to by IY plus displacement d with the
value stored in L.

Load the location pointed to by IY plus displacement d with the
value n.

Load the location pointed to by nn with the value stored in A.

Load the two locations pointed to by nn with the two-byte value
stored in BC.

Load the two locations pointed to by nn with the two-byte value
stored in DE.

Load the two locations pointed to by nn with the two-byte value
stored in HL.

Load the two locations pointed to by nn with the two-byte value
stored in IX.

Load the two locations pointed to by nn with the two-byte value
stored in IY.

Load the two locations pointed to by nn with the two-byte value
stored in SP.

Load A with the contents of the location pointed to by BC.
Load A with the contents of the location pointed to by DE.
Load A with the contents of the location pointed to by HL.

Load A with the contents of the location pointed to by IX plus
displacement d.

Load A with the contents of the location pointed to by IY plus
displacement d.

Load A with the contents of the location pointed to by nn.
Load A with the contents of A. (Can there be a use for this?).

200

The Amstrad Notepad

LD AB
LD AC

LD AD

LD AE

LD AH

LD Al
LDAL

LD An

LD AR

LD B,(HL)
LD B,(X+d)

LD B,(Y+d)

LD B,(nn)
LDBA
LD B,B
LD B,C
LD B,D
LD BE
LD BH
LD B,L
LD Bn
LD C,(HL)
LD C,(X+d)

LD C,aY+d)

LD C,(nn)
LDCA
LDCB
LbCC
LDCD
LDCE

Load A with the contents of B.
Load A with the contents of C.

Load A with the contents of D.

Load A with the contents of E.

Load A with the contents of H.

Load A with the contents of I (Interrupt register).

Load A with the contents of L.
Load A with the value n.

Load A with the contents of R (Refresh register).
Load B with the contents of the location pointed to by HL.
Load B with the contents of the location pointed to by IX plus

displacement d.

Load B with the contents of the location pointed to by IY plus

displacement d.

Load B with the contents of the location pointed to by nn.

Load B with the contents of A.

Load B with the contents of B.
Load B with the contents of C.

Load B with the contents of D.

Load B with the contents of E.

Load B with the contents of H.

Load B with the contents of L.
Load B with the value n.

Load C with the contents of the location pointed to by HL.
Load C with the contents of the location pointed to by IX plus

displacement d.

Load C with the contents of the location pointed to by IY plus

displacement d.

Load C with the contents of the location pointed to by nn.

Load C with the contents of A.

Load C with the contents of B.
Load C with the contents of C.

Load C with the contents of D.

Load C with the contents of E.

Advanced User Guide 201

LD CH
LDCL
LDCa

LD D,(HL)
LD D,0X+d)

LD D,(IY+d)

LD D,(nn)
LDDA
LDD,B
LDDC
LDDD
LDDE
LDDH
LDDL

LD D,n

LD E,(HL)
LD E(X+d)

LD E,(IY+d)

LD E,(nn)
LDEA
LDEB
LDEC
LDED
LDEE
LDEH
LDEL
LDEn

LD H,(HL)
LD H,(IX+d)

Load C with the contents of H.

Load C with the contents of L.

Load C with the value n.

Load D with the contents of the location pointed to by HL.

Load D with the contents of the location pointed to by IX plus
displacement d.

Load D with the contents of the location pointed to by IY plus
displacement d.

Load D with the contents of the location pointed to by nn.
Load D with the contents of A.

Load D with the contents of B.

Load D with the contents of C.

Load D with the contents of D.

Load D with the contents of E.

Load D with the contents of H.

Load D with the contents of L.

Load D with the value n.

Load E with the contents of the location pointed to by HL.

Load E with the contents of the location pointed to by IX plus
displacement d.

Load E with the contents of the location pointed to by IY plus
displacement d.

Load E with the contents of the location pointed to by nn.
Load E with the contents of A.

Load E with the contents of B.

Load E with the contents of C.

Load E with the contents of D.

Load E with the contents of E.

Load E with the contents of H.

Load E with the contents of L.

Load E with the value n.

Load H with the contents of the location pointed to by HL.

Load H with the contents of the location pointed to by IX plus
displacement d.

202

The Amstrad Notepad

LD H,(IY+d)

LD H,(nn)
LDHA
LD H,B

LD H,C

LD H,D
LD HE
LD HH
LD HL

LD Hn

LD HL,(nn)
LD HL,nn
LD LA

LD IX,(nn)
LD IX,nn
LD IY (nn)
LD IY,nn
LD L,(HL)
LD L,(IX+d)

LD L,(IY+d)

LD L,(nn)
LDLA
LDLB
LDL,C
LDLD
LDLE
LDLH
LDLL
LDLn
LDRA

Load H with the contents of the location pointed to by 1Y plus
displacement d.

Load H with the contents of the location pointed to by nn.
Load H with the contents of A.

Load H with the contents of B.

Load H with the contents of C.

Load H with the contents of D.

Load H with the contents of E.

Load H with the contents of H.

Load H with the contents of L.

Load H with the value n.

Load HL with the two-byte pair at location nn.

Load HL with the two-byte value nn.

Load I (Interrupt register) with the contents of A.

Load IX with the two-byte value at location nn.

Load IX with the two-byte value nn.

Load IY with the two-byte value at location nn.

Load IY with the two-byte value nn.

Load L with the contents of the location pointed to by HL.

Load L with the contents of the location pointed to by IX plus
displacement d.

Load L with the contents of the location pointed to by IY plus
displacement d.

Load L with the contents of the location pointed to by nn.
Load L with the contents of A.

Load L with the contents of B.

Load L with the contents of C.

Load L with the contents of D.

Load L with the contents of E.

Load L with the contents of H.

Load L with the contents of L.

Load L with the value n.

Load R (Refresh register) with the contents of A.

Advanced User Guide 203

LD SP,(nn)
LD SPHL
LD SPIX
LD SPIY
LD SP,nn
LDD

LDDR

LDI

LDIR

NopP
OR A
OR B
ORC
ORD
ORE
OR H
ORL
Orn
OTDR

OTIR

Load SP with the two-byte contents pointed to by nn.
Load SP with the value in HL.

Load SP with the value in IX.

Load SP with the value in IY.

Load SP with the value nn.

The contents of the location pointed to by HL are loaded into the
address pointed to by DE. Then BC, DE and HL are all
decremented.

The contents of the location pointed to by HL are loaded into the
address pointed to by DE. Then BC, DE and HL are all
decremented. This continues until BC equals 0.

The contents of the location pointed to by HL are loaded into the
address pointed to by DE. Then DE and HL are incremented, while
BC is decremented.

The contents of the location pointed to by HL are loaded into the
address pointed to by DE. Then DE and HL are incremented, while
BC is decremented. This continues until BC equals 0.

The contents of A are subtracted from 0, and the result is stored in
A.

Do nothing for one clock cycle.

A is logically ORed with A, and the result is stored in A.

A is logically ORed with B, and the result is stored in A.

A is logically ORed with C, and the result is stored in A.

A is logically ORed with D, and the result is stored in A.

A is logically ORed with E, and the result is stored in A.

A is logically ORed with H, and the result is stored in A.

A is logically ORed with L, and the result is stored in A.

A is logically ORed with the value n, and the result is stored in A.

The contents of the location pointed to by HL are output to the
device addressed by the C register. Both B and HL are then
decremented. This continues until B equals 0. C supplies bits 0 to 7
of the port address, and B (after decrementing) supplies bits 8 to 15

The contents of the location pointed to by HL are output to the
device addressed by the C register. B is then decremented and HL
is incremented. This continues until B equals 0. C supplies bits 0 to
7 of the port address, and B (after decrementing) supplies bits 8 to
15

204

The Amstrad Notepad

OUT (C)A
OUT (O),B
OUT (0),C
OUT (C).0
OUT (C).E
OUT (O),H
OuT (O),L

OUT (n),A
OUTD

OUTI

POP AF
POP BC
POP DE
POP HL
POP IX
POP IY
PUSH AF

PUSH BC

Output the contents of A to port C. C supplies bits 0 to 7 of the
port address, while B supplies bits 8 to 15.

Output the contents of B to port C. C supplies bits 0 to 7 of the port
address, while B supplies bits 8 to 15.

Output the contents of C to port C. C supplies bits 0 to 7 of the port
address, while B supplies bits 8 to 15.

Output the contents of D to port C. C supplies bits 0 to 7 of the
port address, while B supplies bits 8 to 15.

Output the contents of E to port C. C supplies bits 0 to 7 of the port
address, while B supplies bits 8 to 15.

Output the contents of H to port C. C supplies bits 0 to 7 of the
port address, while B supplies bits 8 to 15.

Output the contents of L to port C. C supplies bits 0 to 7 of the port
address, while B supplies bits 8 to 15.

Output the contents of A to the device addressed by n.

The contents of the location pointed to by HL are output to the
device addressed by C. Then B and HL are decremented. C
supplies bits 0 to 7 of the ports address and B supplies bits 8 to 15
(after decrementing).

The contents of the location pointed to by HL are output to the
device addressed by C. Then B is decremented and HL is
incremented. C supplies bits 0 to 7 of the ports address and B
supplies bits 8 to 15 (after decrementing).

The two-byte contents of the location pointed to by SP (the Stack
Pointer) are loaded into AF and SP is incremented by two.
The two-byte contents of the location pointed to by SP (the Stack
Pointer) are loaded into BC and SP is incremented by two.
The two-byte contents of the location pointed to by SP (the Stack
Pointer) are loaded into DE and SP is incremented by two.
The two-byte contents of the location pointed to by SP (the Stack
Pointer) are loaded into HL and SP is incremented by two.

The two-byte contents of the location pointed to by SP (the Stack
Pointer) are loaded into IX and SP is incremented by two.

The two-byte contents of the location pointed to by SP (the Stack
Pointer) are loaded into IY and SP is incremented by two.

SP (the Stack Pointer) is decremented by two and the two-byte
contents of AF are loaded to the location now pointed to by SP.

SP (the Stack Pointer) is decremented by two and the two-byte
contents of BC are loaded to the location now pointed to by SP.

Advanced User Guide 205

PUSH DE
PUSH HL
PUSH IX
PUSH IY

RES 0,(HL)
RES 0,(IX+d)

RES 0,(IY+d)

RES 0,A
RES 0,B
RES 0,C
RES 0D
RES O.E
RES OH
RES O,L
RES 1,(HL)
RES 1,(X+d)

RES 1,(Y+d)

RES LA
RES 1,B
RES 1,C
RES 1D
RES 1LE
RES 1.H
RES 1,L
RES 2,(HL)
RES 2,(IX+d)

SP (the Stack Pointer) is decremented by two and the two-byte
contents of DE are loaded to the location now pointed to by SP.

SP (the Stack Pointer) is decremented by two and the two-byte
contents of HL are loaded to the location now pointed to by SP.

SP (the Stack Pointer) is decremented by two and the two-byte
contents of IX are loaded to the location now pointed to by SP.

SP (the Stack Pointer) is decremented by two and the two-byte
contents of I'Y are loaded to the location now pointed to by SP.

Bit 0 of the location pointed to by HL is reset to 0.
Bit 0 of the location pointed to by IX plus displacement d is reset
t0 0.

Bit 0 of the location pointed to by IY plus displacement d is reset
t0 0.

Bit 0 of A is reset to 0.

Bit 0 of B is reset to 0.

Bit 0 of C is reset to 0.

Bit 0 of D is reset to 0.

Bit 0 of E is reset to 0.

Bit 0 of Fis reset to 0.

Bit 0 of G is reset to 0.

Bit 1 of the location pointed to by HL is reset to 0.

E)"O 1 of the location pointed to by IX plus displacement d is reset

Bit 1 of the location pointed to by IY plus displacement d is reset
to 0.

Bit 1 of A is reset to 0.

Bit 1 of B is reset to 0.

Bit 1 of C is reset to 0.

Bit 1 of D is reset to 0.

Bit 1 of E is reset t0 0.

Bit 1 of F is reset to 0.

Bit 1 of G is reset to 0.

Bit 2 of the location pointed to by HL is reset to 0.

Bit 2 of the location pointed to by IX plus displacement d is reset
to

206 The Amstrad Notepad

RES 2,IY+d) Bit 2 of the location pointed to by IY plus displacement d is reset

10 0.
RES 2,A Bit 2 of A is reset to 0.
RES 2,B Bit 2 of B is reset to 0.
RES 2,C Bit 2 of C is reset to 0.
RES 2,D Bit 2 of D is reset to 0.
RES 2,E Bit 2 of E is reset to 0.
RES 2,H Bit2 of Fis reset to 0.
RES 2L Bit2 of G is reset to 0.

RES 3,(HL) Bit 3 of the location pointed to by HL is reset to 0.
RES 3,IX+d) Bit 3 of the location pointed to by IX plus displacement d is reset
to

0.
RES 3,(IY+d) Bito 3 of the location pointed to by IY plus displacement d is reset
t0 0.
RES 3A Bit 3 of A is reset to 0.
RES 3,B Bit 3 of B is reset to 0.
RES 3,C Bit 3 of C is reset to 0.
RES 3D Bit 3 of D is reset to 0.
RES 3.E Bit 3 of E is reset to 0.
RES 3H Bit 3 of Fis reset to 0.
RES 3L Bit 3 of G is reset to 0.

RES 4,(HL) Bit 4 of the location pointed to by HL is reset to 0.
RES 4,(IX+d) Bit 4 of the location pointed to by IX plus displacement d is reset
10 0.

RES 4,(IY+d) Bit 4 of the location pointed to by IY plus displacement d is reset
to

RES 4,A Bit4 of A is reset to 0.
RES 4,B Bit 4 of B is reset to 0.
RES 4,C Bit 4 of Cis reset to 0.
RES 4D Bit 4 of D is reset to 0.
RES 4E Bit4 of E is reset to 0.
RES 4,H Bit 4 of F is reset to 0.
RES 4,L Bit4 of G is reset to 0.

RES 5,(HL) Bit 5 of the location pointed to by HL is reset to 0.

Advanced User Guide 207

RES 5,IX+d) Bit 5 of the location pointed to by IX plus displacement d is reset
t0 0.

RES 5,IY+d) Bit 5 of the location pointed to by IY plus displacement d is reset
10 0.

RES 5A Bit 5 of A is reset to 0.
RES 5B Bit 5 of B is reset to 0.
RES 5,C Bit 5 of C is reset to 0.
RES 5D Bit5 of D is reset to 0.
RES 5.E Bit 5 of E is reset to 0.
RES S.H Bit 5 of Fis reset to 0.
RES 5L Bit 5 of G is reset to 0.

RES 6,(HL) Bit 6 of the location pointed to by HL is reset to 0.
RES 6,(IX+d) Bit 6 of the location pointed to by IX plus displacement d is reset
to 0.

RES 6,0Y+d) Bit 6 of the location pointed to by IY plus displacement d is reset
10 0.

RES 6,A Bit 6 of A is reset to 0.
RES 6,B Bit 6 of B is reset to 0.
RES 6,C Bit 6 of C is reset to 0.
RES 6,D Bit 6 of D is reset to 0.
RES 6,E Bit 6 of E is reset to 0.
RES 6H Bit 6 of F is reset to 0.
RES 6L Bit 6 of G is reset to 0.

RES 7,(HL) Bit 7 of the location pointed to by HL is reset to 0.
RES 7,(IX+d) Bit 7 of the location pointed to by IX plus displacement d is reset
0.

RES 7,0Y+d) Bit 7 of the location pointed to by IY plus displacement d is reset

0 0.
RES 7A Bit 7 of A is reset to 0.
RES 7,B Bit 7 of B is reset to 0.
RES 7,C Bit 7 of C is reset to 0.
RES 7D Bit 7 of D is reset to 0.
RES 7.E Bit 7 of E is reset to 0.

RES 7H Bit 7 of F is reset to 0.

The Amstrad Notepad

RETM
RET NC
RET NZ
RETP
RET PE
RET PO

RET Z

RL (HL)

RL (IX+d)

RL (IY+d)

Bit 7 of G is reset to 0.

PC (the Program Counter) is popped off the stack and execution
continues from the new address.

If C (Carry) is set PC (the Program Counter) is popped off the
stack and execution continues from the new address.

If M (Minus) is set PC (the Program Counter) is popped off the
stack and execution continues from the new address.

If C is not set (No Carry) PC (the Program Counter) is popped off
the stack and execution continues from the new address.

If Z is not set (Not Zero) PC (the Program Counter) is popped off
the stack and execution continues from the new address.

If P (Plus) is set PC (the Program Counter) is popped off the stack
and execution continues from the new address.

If PE (Even) is set PC (the Program Counter) is popped off the
stack and execution continues from the new address.

If PO (Odd) is set PC (the Program Counter) is popped off the
stack and execution continues from the new address.

If Z (Zero) is set PC (the Program Counter) is popped off the stack
and execution continues from the new address.

This is the same as RET but must be used when returning from an
interrupt to properly handle nested interrupts. You must execute and
EI before issuing a RET.

This is the same as RET but must be used when returning from a
non-maskable interrupt to restore the state of the interrupt flag
before the non-maskable interrupt.

The contents of the location pointed to by HL are shifted to the left
by one bit. The contents of the Carry flag is placed in bit 0 and the
contents of bit 7 is moved to the Carry flag.

The contents of the location pointed to by IX plus displacement d
are shifted to the left by one bit. The contents of the Carry flag are
placed in bit 0 and the contents of bit 7 are moved to the Carry
flag.

The contents of the location pointed to by 1Y plus displacement d is
shifted to the left by one bit. The contents of the Carry flag is
placed in bit 0 and the contents of bit 7 is moved to the Carry flag.

The contents of A is shifted to the left by one bit. The contents of
the Carry flag is placed in bit 0 and the contents of bit 7 is moved
to the Carry flag.

The contents of B is shifted to the left by one bit. The contents of
the Carry flag is placed in bit 0 and the contents of bit 7 is moved
to the Carry flag.

Advanced User Guide 209

RLC

RLC (HL)

RLC (IX+d)

RLC (IY+d)

RLC A
RLCB
RLCC
RLCD
RLCE
RLCH

RLCL

The contents of C is shifted to the left by one bit. The contents of
the Carry flag is placed in bit 0 and the contents of bit 7 is moved
to the Carry flag.
The contents of D is shifted to the left by one bit. The contents of
the Carry flag is placed in bit 0 and the contents of bit 7 is moved
to the Carry flag.
The contents of E is shifted to the left by one bit. The contents of
the Carry flag is placed in bit 0 and the contents of bit 7 is moved
to the Carry flag.
The contents of H is shifted to the left by one bit. The contents of
the Carry flag is placed in bit 0 and the contents of bit 7 is moved
to the Carry flag.
The contents of L is shifted to the left by one bit. The contents of
the Carry flag is placed in bit O and the contents of bit 7 is moved
to the Carry flag.

The contents of A is shifted to the left by one bit. The contents of
the Carry flag is placed in bit 0 and the contents of bit 7 is moved
to the Carry flag.

The contents of the location pointed to by HL is rotated left by one
bit. The original contents of bit 7 is placed in the Carry flag and
also bit 0.

The contents of the location pointed to by IX plus displacement d is
rotated left by one bit. The original contents of bit 7 is placed in the
Carry flag and also bit 0.

The contents of the location pointed to by IY plus displacement d is
rotated left by one bit. The original contents of bit 7 is placed in the
Carry flag and also bit 0.

The contents of A is rotated left by one bit. The original contents of
bit 7 is placed in the Carry flag and also bit 0.

The contents of B is rotated left by one bit. The original contents of
bit 7 is placed in the Carry flag and also bit 0.

The contents of C is rotated left by one bit. The original contents of
bit 7 is placed in the Carry flag and also bit 0.

‘The contents of D is rotated left by one bit. The original contents of
bit 7 is placed in the Carry flag and also bit 0.

The contents of E is rotated left by one bit. The original contents of
bit 7 is placed in the Carry flag and also bit 0.

The contents of H is rotated left by one bit. The original contents of
bit 7 is placed in the Carry flag and also bit 0.

The contents of L is rotated left by one bit. The original contents of
bit 7 is placed in the Carry flag and also bit 0.

210

The Amstrad Notepad

RLCA

RR (HL)

RR (IX-+d)

RR (IY+d)

RRB

RRH

‘The contents of A is rotated left by one bit. The original contents of
bit 7 is placed in the Carry flag and also bit 0.

The four low bits of the location pointed to by HL are moved to the
four high bits of the same location. The high bits are moved to the
four low bits of A, after the four low bits of A have been moved to
the four low bits of the original location.

The contents of the location pointed to by HL are shifted to the
right by one bit. The contents of the Carry flag is moved to bit 7
and the contents of bit 0 is moved to the Carry flag.

The contents of the location pointed to by IX plus displacement d
are shifted to the right by one bit. The contents of the Carry flag is
moved to bit 7 and the contents of bit 0 is moved to the Carry flag.

The contents of the location pointed to by IY plus displacement d
are shifted to the right by one bit. The contents of the Carry flag are
moved to bit 7 and the contents of bit 0 are moved to the Carry
flag.

The contents of A are shifted to the right by one bit. The contents
of the Carry flag are moved to bit 7 and the contents of bit 0 are
moved to the Carry flag.

The contents of B are shifted to the right by one bit. The contents
of the Carry flag are moved to bit 7 and the contents of bit 0 are
moved to the Carry flag.

The contents of C are shifted to the right by one bit. The contents
of the Carry flag are moved to bit 7 and the contents of bit 0 are
moved to the Carry flag.

The contents of D are shifted to the right by one bit. The contents

of the Carry flag are moved to bit 7 and the contents of bit 0 are
moved to the Carry flag.

The contents of E are shifted to the right by one bit. The contents
of the Carry flag are moved to bit 7 and the contents of bit 0 are
moved to the Carry flag.

The contents of H are shifted to the right by one bit. The contents
of the Carry flag are moved to bit 7 and the contents of bit 0 are
moved to the Carry flag.

The contents of L are shifted to the right by one bit. The contents
of the Carry flag are moved to bit 7 and the contents of bit 0 are
moved to the Carry flag.

The contents of A are shifted to the right by one bit. The contents

of the Carry flag are moved to bit 7 and the contents of bit 0 are
moved to the Carry flag.

Advanced User Guide 211

RRC (HL)

RRC (IX+d)

RRC (IY+d)

RST &00
RST &08
RST &10
RST &18

RST &20

The contents of the location pointed to by HL are rotated to the
right by one bit. The contents of bit 0 are moved to the Carry flag
and also to bit 7.

The contents of the location pointed to by IX plus displacement d
are rotated to the right by one bit. The contents of bit 0 are moved
to the Carry flag and also to bit 7.
The contents of the location pointed to by IX plus displacement d
are rotated to the right by one bit. The contents of bit 0 are moved
to the Carry flag and also to bit 7.

The contents of A are rotated to the right by one bit. The contents
of bit 0 are moved to the Carry flag and also to bit 7.

The contents of B are rotated to the right by one bit. The contents
of bit 0 are moved to the Carry flag and also to bit 7.

The contents of C are rotated to the right by one bit. The contents
of bit 0 are moved to the Carry flag and also to bit 7.

The contents of D are rotated to the right by one bit. The contents
of bit 0 are moved to the Carry flag and also to bit 7.

The contents of E are rotated to the right by one bit. The contents
of bit 0 are moved to the Carry flag and also to bit 7.

The contents of H are rotated to the right by one bit. The contents
of bit 0 are moved to the Carry flag and also to bit 7.

The contents of L are rotated to the right by one bit. The contents
of bit 0 are moved to the Carry flag and also to bit 7.

The contents of A are rotated to the right by one bit. The contents
of bit 0 are moved to the Carry flag and also to bit 7.

The four high order bits of the location pointed to by HL are
moved to the four low bits of the same location. The four low order
bits are moved to the four low order bits of A, after the four low
order bits of A are moved to the four high order bits of the original
location.

The contents of PC are pushed onto the stack and a jump is made
directly to address &0000.

The contents of PC are pushed onto the stack and a jump is made
directly to address &0008.
The contents of PC are pushed onto the stack and a jump is made
directly to address &0010.
The contents of PC are pushed onto the stack and a jump is made
directly to address &0018.
The contents of PC are pushed onto the stack and a jump is made
directly to address &0020.

212

The Amstrad Notepad

RST &28
RST &30
RST &38
SBC A

SBC A,(HL)

SBC A(IX+d)

SBC A,(IY+d)

SBCAA
SBCAB
SBCAC
SBC AD
SBC AE
SBCAH
SBCAL
SBC HL,BC
SBC HL,DE
SBC HL,HL

SBC HL,SP

The contents of PC are pushed onto the stack and a jump is made
directly to address &0028.

The contents of PC are pushed onto the stack and a jump is made
directly to address &0030.
The contents of PC are pushed onto the stack and a jump is made
directly to address &0038.

The value n is summed with the Carry flag and then subtracted
from the contents of A, and the result is placed in A.

The contents of the address pointed to by HL are summed with the
Carry flag and then subtracted from the contents of A, and the
result is placed in A.

The contents of the address pointed to by IX plus displacement d is
summed with the Carry flag and then subtracted from the contents
of A, and the result is placed in A.

The contents of the address pointed to by IY plus displacement d
are summed with the Carry flag and then subtracted from the
contents of A, and the result is placed in A.

The contents of A are summed with the Carry flag and then
subtracted from the contents of A, and the result is placed in A.
The contents of B are summed with the Carry flag and then
subtracted from the contents of A, and the result is placed in A.

The contents of C are summed with the Carry flag and then
subtracted from the contents of A, and the result is placed in A.
The contents of D are summed with the Carry flag and then
subtracted from the contents of A, and the result is placed in A.
The contents of E are summed with the Carry flag and then
subtracted from the contents of A, and the result is placed in A.
The contents of H are summed with the Carry flag and then
subtracted from the contents of A, and the result is placed in A.
The contents of L are summed with the Carry flag and then
subtracted from the contents of A, and the result is placed in A.
The contents of BC plus the Carry flag are subtracted from the
contents of HL, and the result is placed in HL.

The contents of DE plus the Carry flag are subtracted from the
contents of HL, and the result is placed in HL.

The contents of HL plus the Carry flag are subtracted from the
contents of HL, and the result is placed in HL.

The contents of SP plus the Carry flag are subtracted from the
contents of HL, and the result is placed in HL.

Advanced User Guide 213

SCF The Carry flag is set.

SET 0,(HL) Bit 0 of the location pointed to by HL is setto 1.

SET 0,(IX+d) Bit 0 of the location pointed to by IX plus displacement d is set to
1

SET 0,0Y+d) Bit 0 of the location pointed to by IY plus displacement d is set to
1

SET0.A BitOof Aissetto 1.
SET 0,B BitOof Bissetto1.
SET0,C BitOof Cissetto 1.
SET 0,D BitOof Dissetto 1.
SET OE BitOof Eissetto 1.
SET O,H BitOof Fissetto 1.
SETOL BitOof Gissetto 1.

SET 1,(HL) Bit 1 of the location pointed to by HL is set to 1.
SET 1,0X+d) Bit 1 of the location pointed to by IX plus displacement d is set to
1.

SET 1,(IY+d) Bit 1 of the location pointed to by IY plus displacement d is set to
1.

SET LA Bitl1of Aissetto 1.
SET 1B Bitlof Bissetto 1.
SET 1,C Bit 1 of Cissetto 1.
SET 1,D Bit1of Dissetto 1.
SET 1LE Bit1ofEissetto 1.
SET L.H Bit 1 of Fissetto 1.
SET 1L Bit 1 of Gissetto 1.

SET 2,(HL) Bit 2 of the location pointed to by HL is set to 1.
SET 2,(IX+d) Bit 2 of the location pointed to by IX plus displacement d is set to
1.

SET 2,(IY+d) Bit 2 of the location pointed to by IY plus displacement d is set to
L

SET 2,A Bit2 of Aissetto 1.
SET 2B Bit2of Bissetto 1.
SET 2,C Bit2of Cissetto 1.

SET 2D Bit2of Dissetto 1.

214

The Amstrad Notepad

SET2E

SET 2H
SET 2L

SET 3,(HL)
SET 3,(IX+d)

SET 3,(Y+d)

SET 3,A
SET 3,B
SET 3,C
SET 3D
SET3E
SET 3 H
SET 3L
SET 4,(HL)
SET 4,(IX+d)

SET 4,(1Y+d)

SET 4,A
SET 4B
SET 4,C
SET 4D
SET4E
SET 4H
SET 4L
SET 5,(HL)
SET 5,(IX+d)

SET 5,(Y+d)

SET 5,A
SET 5,B

Bit2of Eissetto 1.

Bit2 of Fissetto 1.

Bit2 of Gis setto 1.

Bit 3 of the location pointed to by HL is set to 1.

lxm 3 of the location pointed to by IX plus displacement d is set to

Bit 3 of the location pointed to by IY plus displacement d is set to
1

Bit3 of Aissetto 1.

Bit3of Bissetto 1.

Bit3of Cissetto 1.

Bit3 of Dissetto 1.

Bit3 of Eissetto 1.

Bit3of Fissetto 1.

Bit3 of Gissetto 1.

Bit 4 of the location pointed to by HL is set to 1.

llail 4 of the location pointed to by IX plus displacement d is set to

Bit 4 of the location pointed to by IY plus displacement d is set to
L.

Bit4 of Aissetto 1.

Bit4 of Bissetto 1.

Bit4 of Cissetto 1.

Bit4 of Dissetto 1.

Bit4 of Eissetto 1.

Bit4 of Fissetto 1.

Bit4 of Gissetto 1.

Bit 5 of the location pointed to by HL is set to 1.

?il 5 of the location pointed to by IX plus displacement d is set to

Bit 5 of the location pointed to by IY plus displacement d is set to
1.

Bit5of Aissetto 1.
BitSof Bissetto 1.

Advanced User Guide 215

SET5C
SET 5D
SETSE

SET 5H
SET 5L

SET 6,(HL)
SET 6,(IX+d)

SET 6,(IY+d)

SET 6,A

SET 6,B

SET 6,C

SET 6,D

SET 6E

SET 6,H
SET 6L

SET 7,(HL)
SET 7,(X+d)

SET 7,(IY+d)

SET 7,A
SET 7,B
SET 7,C
SET 7.0
SET7E
SET 7H
SET 7L
SLA (HL)

SLA (IX+d)

Bit5of Cissetto 1.

Bit5Sof Dissetto 1.

Bit5of Eissetto 1.

Bit5of Fissetto 1.

Bit5of Gissetto 1.

Bit 6 of the location pointed to by HL is set to 1.

lBil 6 of the location pointed to by IX plus displacement d is set to

Bit 6 of the location pointed to by IY plus displacement d is set to
1.

Bit6of Aissetto 1.

Bit6of Bissetto 1.

Bit6of Cissetto 1.

Bit6of Dissetto 1.

Bit6of Eissetto 1.

Bit6of Fissetto 1.

Bit6of Gissetto 1.

Bit 7 of the location pointed to by HL is set to 1.

lliit 7 of the location pointed to by IX plus displacement d is set to

Bit 7 of the location pointed to by IY plus displacement d is set to
L

Bit7of Aissetto 1.
Bit7of Bissetto 1.
Bit7of Cissetto 1.
Bit7of Dissetto 1.
Bit7of Eissetto 1.
Bit 7of Fissetto 1.
Bit7of Gissetto 1.

The contents of the address pointed to by HL are arithmetically
shifted right by one bit. The contents of bit 7 are moved to the
Carry flag and bit 0 is loaded with 0.

The contents of the address pointed to by IX plus displacement d
are arithmetically shifted right by one bit. The contents of bit 7 are
moved to the Carry flag and bit 0 is loaded with 0.

216

The Amstrad Notepad

SLA (IY+d)

SLAA

SLAB

SLAC

SLAD

SLAE

SLAH

SLAL

SRA (HL)

SRA (IX+d)

SRA (IY+d)

SRA A

SRAB

SRAC

The contents of the address pointed to by 1Y plus displacement d
are arithmetically shifted left by one bit. The contents of bit 7 are
moved to the Carry flag and bit 0 is loaded with 0.

The contents of A are arithmetically shifted left by one bit. The
contents of bit 7 are moved to the Carry flag and bit 0 is loaded
with 0.

The contents of B are arithmetically shifted left by one bit. The
contents of bit 7 are moved to the Carry flag and bit 0 is loaded
with 0.

The contents of C are arithmetically shifted left by one bit. The
contents of bit 7 are moved to the Carry flag and bit 0 is loaded
with 0.

The contents of D are arithmetically shifted left by one bit. The
contents of bit 7 are moved to the Carry flag and bit 0 is loaded
with 0.

The contents of E are arithmetically shifted left by one bit. The
contents of bit 7 are moved to the Carry flag and bit 0 is loaded
with 0.

The contents of H are arithmetically shifted left by one bit. The
contents of bit 7 are moved to the Carry flag and bit 0 is loaded
with 0.

The contents of L are arithmetically shifted left by one bit. The
contents of bit 7 are moved to the Carry flag and bit 0 is loaded
with 0.

The contents of the address pointed to by HL are arithmetically
shifted right by one bit. The contents of bit 0 are moved to the
Carry flag and bit 7 remains unchanged.

The contents of the address pointed to by IX plus displacement d
are arithmetically shifted right by one bit. The contents of bit 0 are
moved to the Carry flag and bit 7 remains unchanged.

The contents of the address pointed to by IY plus displacement d
are arithmetically shifted right by one bit. The contents of bit 0 are
moved to the Carry flag and bit 7 remains unchanged.

The contents of A are arithmetically shifted right by one bit. The
contents of bit 0 are moved to the Carry flag and bit 7 remains
unchanged.

The contents of B are arithmetically shifted right by one bit. The
contents of bit 0 are moved to the Carry flag and bit 7 remains
unchanged.

The contents of C are arithmetically shifted right by one bit. The
contents of bit 0 are moved to the Carry flag and bit 7 remains
unchanged.

Advanced User Guide 217

SRAD

SRAE

SRAH

SRAL

SRL (HL)

SRL (IX+d)

SRL (IY+d)

SRL A
SRL B

SRL C

SRL D
SRLE

SRL H
SRLL

SUB (HL)
SUB (IX+d)

SUB (IY+d)

The contents of D are arithmetically shifted right by one bit. The
contents of bit 0 are moved to the Carry flag and bit 7 remains
unchanged.

The contents of E are arithmetically shifted right by one bit. The
contents of bit 0 are moved to the Carry flag and bit 7 remains
unchanged.

The contents of H are arithmetically shifted right by one bit. The
contents of bit 0 are moved to the Carry flag and bit 7 remains
unchanged.

The contents of L are arithmetically shifted right by one bit. The
contents of bit 0 are moved to the Carry flag and bit 7 remains
unchanged.

The contents of the location pointed to by HL are logically shifted
right by one bit. Bit 7 is set to 0 and the contents of bit 0 are
moved to the Carry flag.

The contents of the location pointed to by IX plus displacement d
are logically shifted right by one bit. Bit 7 is set to 0 and the
contents of bit 0 are moved to the Carry flag.

The contents of the location pointed to by IY plus displacement d
are logically shifted right by one bit. Bit 7 is set to 0 and the
contents of bit 0 are moved to the Carry flag.

The contents of A are logically shifted right by one bit. Bit 7 is set
to 0 and the contents of bit 0 are moved to the Carry flag.

The contents of B are logically shifted right by one bit. Bit 7 is set
to 0 and the contents of bit 0 are moved to the Carry flag.

The contents of C are logically shifted right by one bit. Bit 7 is set
10 0 and the contents of bit 0 are moved to the Carry flag.

‘The contents of D are logically shifted right by one bit. Bit 7 is set
to 0 and the contents of bit 0 are moved to the Carry flag.

The contents of E are logically shifted right by one bit. Bit 7 is set
to 0 and the contents of bit 0 are moved to the Carry flag.

The contents of H are logically shifted right by one bit. Bu 7 is set
to 0 and the contents of bit 0 are moved to the Carry

The contents of L are logically shifted right by one bit. BI[7 is set
to 0 and the contents of bit 0 are moved to the Carry

The contents of the location pointed to by HL are subtracted from
A, and the result is stored in A.

The contents of the location pointed to by IX plus displacement d
are subtracted from A, and the result is stored in A.

The contents of the location pointed to by IY plus displacement d
are subtracted from A, and the result is stored in A.

218

The Amstrad Notepad

SUB A

SUB B

SUB C

SUB D

SUB E

SUB H

SUBL

SUB n
XOR (HL)

XOR (IX+d)
XOR (1Y+d)
XOR A
XOR B
XOR C
XORD
XOR E
XORH
XORL

XORn

’Il\'he contents of A are subtracted from A, and the result is stored in
Xhe contents of B are subtracted from A, and the result is stored in
xl:\e contents of C are subtracted from A, and the result is stored in
Zhe contents of D are subtracted from A, and the result is stored in
th contents of E are subtracted from A, and the result is stored in
'Elle contents of H are subtracted from A, and the result is stored in
'}I\';;e contents of L are subtracted from A, and the result is stored in

The value n is subtracted from A, and the result is stored in A.

The contents of the location pointed to by HL are exclusive-ORed
with A, and the result is stored in A.

The contents of the location pointed to by IX plus displacement d
are exclusive-ORed with A, and the result is stored in A.

The contents of the location pointed to by IY plus displacement d
are exclusive-ORed with A, and the result is stored in A.

The contents of A are exclusive-ORed with A, and the result is
stored in A.

The contents of B are exclusive-ORed with A, and the result i
stored in A,

The contents of C are exclusive-ORed with A, and the result i
stored in A.

The contents of D are exclusive-ORed with A, and the result is
stored in A.

The contents of E are exclusive-ORed with A, and the result i
stored in A.

The contents of H are exclusive-ORed with A, and the result
stored in A.

The contents of L are exclusive-ORed with A, and the result i
stored in A.

The value n is exclusive-ORed with A, and the result is stored in A.

&

@

o

@

THE UNDOCUMENTED Z80
INSTRUCTIONS

Not many people know that l.he Z80 microprocessor incorporates a number of
to do with handling the IX and IY register
pairs as four single-byte reglsmrs as you can with AF, BC, DE and HL.

However, because Zilog did not document them you are unlikely to find an assembler
that recognises these new mnemonics. Certainly BBC Basic doesn’t, so if you want to
use them you will have to enter in the raw machine code hex codes (which are shown
next to each instruction in the following table).

Thankfully this is quite easy. All you have to do is look up the two-byte pair and
enter code in the following manner (as long as you are in an assembler section of
your program):

DEFB &DD:DEFB &BC

In this case the new instruction CP hX will be assembled.

Please remember that because these instructions are undocumented they are not

guaranteed to work and the author and publisher of this book will accept no

responsibility for your use of them. That said, let’s hope you find them useful.

ADC AhX DD 8C The contents of A, the Carry flag and the high byte of the
IX register are added to A, and the result is stored in A.

ADCAJX DD8D The contents of A, the Carry flag and the low byte of the
IX register are added to A, and the result is stored in A.

ADC AhY FD 8C The contents of A, the Carry flag and the high byte of the
IY register are added to A, and the result is stored in A.

ADCAJY FD8D The contents of A, the Carry flag and the low byte of the
IY register are added to A, and the result is stored in A.

220

The Amstrad Notepad

ADD A,hX

ADD AJIX

ADD AhY

ADD AlY

AND hX

AND IX

AND hY

AND 1Y

CP1Y

INC hX
INC IX
INC hy
INC1Y
LD hX,A
LD hX,B
LD hX,C
LD hX,D

DD 84

DD 85

FD 84

FD 85

DD A4

DD AS

FD A4

FD A5

DD BC

DD BD

FD BC

DD 25
DD 2D
FD 25

FD 2D
DD 67
DD 60
DD 61

DD 62

The contents of A and the high byte of the IX register are
added to A, and the result is stored in A.

The contents of A and the low byte of the IX register are
added to A, and the result is stored in A.

The contents of A and the high byte of the IY register are
added to A, and the result is stored in A.

The contents of A and the low byte of the IY register are
added to A, and the result is stored in A.

The high byte of the IX register is ANDed with A, and
the result is stored in A.

The low byte of the IX register is ANDed with A, and the
result is stored in A.

The high byte of the IY register is ANDed with A, and
the result is stored in A.

The low byte of the IY register is ANDed with A, and the
result is stored in A.

‘The conten ; of the high byte of IX are subtracted from A
and the result is discarded. The flags are then set
according to the result.

The contents of the low byte of IX are subtracted from A
and the result is discarded. The flags are then set
according to the result.

The contents of the high byte of IY are subtracted from A
and the result is discarded. The flags are then set
according to the result.

The contents of the low byte of IY are subtracted from A
and the result is discarded. The flags are then set
according to the result.

The high byte of IX is incremented.
The low byte of IX is incremented.
The high byte of IY is incremented.
The low byte of IY is incremented.
Load the high byte of IX with the value in A.
Load the high byte of IX with the value in B.
Load the high byte of IX with the value in C.
Load the high byte of IX with the value in D.

Advanced User Guide

221

LD hX.E
LD hX,n
LD hY,A
LD hY,B
LD hY,C
LD hy,D
LDhYE
LD hY,n
LD IX,A
LD IX,B
LD IX,.C
LD IX,D
LD IX.E
LD IX,n
LD1Y,A
LD1Y,B
LD1Y,C
LD1Y,D
LDIY.E
LD 1Y,n
LD AhX
LD B,hiX
LD C,hX
LD D,hX
LD E,hX
LD AIX
LD B,IX
LD C,IX
LD D,IX
LDE|X

DD 63
DD 26 nn
FD 67
FD 60
FD 61
FD 62
FD 63
FD 26 nn
DD 6F
DD 68
DD 69
DD 6A
DD 6B
DD 2E nn
FD 6F
FD 68
FD 69
FD 6A
FD 6B
FD 2E nn
DD 7C
DD 44
DD 4C
DD 54
DD 5C
DD 7D
DD 45
DD 4D
DD 55
DD 5D

Load the high byte of IX with the value in E.

Load the high byte of IX with the value n.

Load the high byte of IY with the value in A.
Load the high byte of IY with the value in B.
Load the high byte of IY with the value in C.
Load the high byte of IY with the value in D.
Load the high byte of IY with the value in E.

Load the high byte of IY with the value n.
Load the low byte of IX with the value in A.
Load the low byte of IX with the value in B.
Load the low byte of IX with the value in C.
Load the low byte of IX with the value in D.
Load the low byte of IX with the value in E.
Load the low byte of IX with the value n.
Load the low byte of IY with the value in A.
Load the low byte of IY with the value in B.
Load the low byte of I'Y with the value in C.
Load the low byte of IY with the value in D.
Load the low byte of IY with the value in E.
Load the low byte of IY with the value n.
Load A with the high byte of IX.

Load B with the high byte of IX.

Load C with the high byte of IX.

Load D with the high byte of IX.

Load E with the high byte of IX.

Load A with the low byte of IX.

Load B with the low byte of IX.

Load C with the low byte of IX.

Load D with the low byte of IX.

Load E with the low byte of IX.

222

The Amstrad Notepad

LD AhY
LD B,hY
LD Chy
LD D,hY
LD EhY
LD ALY
LD B,lY
LD ClY
LDDJY
LDE,IY
LD hX,IX
LD IX,hiX
LD hY,lY
LD IY,hY
OR hX

OR IX

OR hY

OR1Y

SBC AhX

SBC A X

SBC AhY

SBCAlY

SLL A

SLL B

FD 7C
FD 44
FD 4C
FD 54
FD 5C
FD 7D
FD 45
FD 4D
FD 55
FD 5D
DD 65
DD 6C
FD 65
FD 6C
DD B4

DD BS

FD B4

FD BS

DD 9C

DD 9D

FD 9C

FD 9D

CB 37

CB 30

Load A with the high byte of IY.

Load B with the high byte of IY.

Load C with the high byte of IY.

Load D with the high byte of IY.

Load E with the high byte of IY.

Load A with the low byte of IY.

Load B with the low byte of IY.

Load C with the low byte of IY.

Load D with the low byte of IY.

Load E with the low byte of IY.

Load the high byte of IX with the low byte.

Load the low byte of IX with the high byte.

Load the high byte of IY with the low byte.

Load the low byte of IX with the high byte.

The high byte of IX is logically ORed with A, and the
result is stored in A,

The low byte of IX is logically ORed with A, and the
result is stored in A.

The high byte of 1Y is logically ORed with A, and the
result is stored in A.

The low byte of IY is logically ORed with A, and the
result is stored in A.

The high byte of IX is summed with the Carry flag and
subtracted from A. The result is then stored in A.

The low byte of IX is summed with the Carry flag and
subtracted from A. The result is then stored in A.

The high byte of 1Y is summed with the Carry flag and
subtracted from A. The result is then stored in A.

The low byte of IX is summed with the Carry flag and
subtracted from A. The result is then stored in A.

The contents of A are logically shifted left. Bit 0 is set to
0 and the contents of bit 7 are moved to the Carry flag.
The contents of B are logically shifted left. Bit 0 is set to
0 and the contents of bit 7 are moved to the Carry flag.

Advanced User Guide 223

SLL C CB 31 The contents of C are logically shifted left. Bit 0 is set to
0 and the contents of bit 7 are moved to the Carry flag.

SLLD CB 32 The contents of D are logically shifted left. Bit 0 is set to
0 and the contents of bit 7 are moved to the Carry flag.

SLLE CB 33 The contents of E are logically shifted left. Bit 0 is set to
0 and the contents of bit 7 are moved to the Carry flag.

SLLH CB 34 The contents of H are logically shifted left. Bit 0 is set to
0 and the contents of bit 7 are moved to the Carry flag.

SLLL CB 35 The contents of L are logically shifted left. Bit 0 is set to

0 and the contents of bit 7 are moved to the Carry flag.

SLL (HL) CB36 The contents of the location pointed to by HL are
logically shifted left. Bit 0 is set to 0 and the contents of

bit 7 are moved to the Carry flag.

SUB hX DD %4 The high byte of IX is subtracted from A and the result is
stored in A.

SUB IX DD 95 The low byte of IX is subtracted from A and the result is
stored in A.

SUB hy FD 94 The high byte of IY is subtracted from A and the result is
stored in A.

SUB 1Y FD 95 The low byte of IY is subtracted from A and the result is
stored in A.

XOR hX DD AC The high byte of IX is exclusive-ORed with A and the
result is stored in A.

XOR IX DD AD The low byte of IX is exclusive-ORed with A and the
result is stored in A.

XOR hY FD AC The high byte of IY is exclusive-ORed with A and the
result is stored in A.

XOR 1Y FD AD The low byte of IY is exclusive-ORed with A and the
result is stored in A.

SECTION 3

APPENDICES

APPENDIX 7

NC100 JUMPBLOCK
ENTRY POINTS

COL1 &B818
COLITEXT &B81B
EDITBUF &B800
FCLOSE &B890
FDATESTAMP &B8C9
FERASE &B893
FGETATTR &B8CF
FINBLOCK &B896
FINCHAR &B899
FINDFIRST &B89C
FINDNEXT &B89F
FOPENIN &B8A2
FOPENOUT &B8AS
FOPENUP &B8A8
FOUTBLOCK &B8AB
FOUTCHAR &BSAE
FRENAME &B8B1
FSEEK &B8B4
FSETATTR &B8CC
FSIZE &B8B7
FSIZEHANDLE &B8BA
FTELL &B8BD
FTESTEOF &B8CO

HEAPADDRESS &BSTE

Advanced User Guide

227

LAPCAT_RECEIVE
LAPCAT_SEND
MCPRINTCHAR
MCREADYPRINTER
MCSETPRINTER
PADGETTICKER
PADGETTIME
PADGETVERSION
PADINITSERIAL
PADINSERIAL
PADOUTPARALLEL
PADOUTSERIAL
PADREADYPARALLEL
PADREADYSERIAL
PADRESETSERIAL
PADSERIALWAITING
PADSETALARM
PADSETTIME
READBUF
SELECTFILE
SETDTA
TESTESCAPE
TEXTOUT
TEXTOUTCOUNT

&B881

&B884
&B887
&B88A
&B88D
&B803

&B8D2

&B809
&B80C
&B8DS
&B8OF
&B8D8
&BSDB
&B851
&B854
&B857
&B872
&B875
&BSDE
&B85A
&B85D
&B860
&B863
&B866
&B869
&B86C
&B86F
&B878
&B87B
&B812
&B8C3
&B8C6
&B815
&BSIE
&B821

228

The Amstrad Notepad

TXTBOLDOFF
TXTBOLDON
TXTCLEARWINDOW
TXTCUROFF
TXTCURON
TXTGETCURSOR
TXTGETWINDOW
TXTINVERSEOFF
TXTINVERSEON
TXTOUTPUT
TXTSETCURSOR
TXTSETWINDOW
TXTUNDERLINEOFF
TXTUNDERLINEON
TXTWRCHAR

&B83F
&B842
&B824
&B827
&B82A
&B82D
&B830
&B845
&B848
&B833
&B836
&B839
&B84B
&BR4E
&B83C

APPENDIX 2

INPUT/OUTPUT PORTS
(&0000 - &00FF)

&0000 Display memory start ‘Write only
&0010-&0013 Memory management Read/Write
&0020 Card wait control Write only
&0030 Baud rate Write only
&0040 Parallel port data Write only
&0050-&0053 Speaker frequency Write only
&0060 IRQ Mask ‘Write only
&0070 Power on/off control Write only
&0080-&008F Not Used 1

&0090 IRQ request status Read/Write
&00A0 Card Status Read only

&00B0-&00B9 Key data in Read only

&00C0-&00C1 UART (uPD71051) Read/Write

&00D0-&00DF RTC (TC8521) Read/Write
&00EQ-&00FF Not Used -

APPENDIX 8

KEYBOARD SCAN CODES

(As repomd by Lhe program INKEY.BAS)
SHIFT CONTROL SVMBOL SHFT/CTRL SHFT/SMBL.

S(op] &ooo 8000 - -
[Tab] 8009 a2Ee a2Ef - . -
Return] &00D 82EC &2EC - - -
[Space] 8020 8220 82EB - - -
0] . 8021 - -

] 8022 s

#] 8023

5] 8024 B

%) 8025 . -
8] - 8026 - - - -
] 8027 - - 833A . .
(l . 8028 - : . -
] - 8029 - - -
'] - 802A - .

+] . 8028 - -

] 8026 - - 80AE

ol 802D - - -

i &02E - - 80AF

1 802F - 5 80A8

0] 8030 - 82E1 -

1] 2031 - 8211 80AD

2] 8032 - 8209 833C

3] 8033 E 82E6 -

4] 8034 - 82E1 - -

5] 8035 - 8209 833E 8202

6] 8036 . 82E0 833D 8207

7] 8037 - 8342 - :

8] 2038 - 8355

0] 8039 - 82DC 3 -
] - 803A - .

fl 8038 3 g 5

] - 803C - .

-] 803D - . 2

>]] 803 -

7 : 803F -

@ - 8040 8200

Advanced User Guide

8386

&08E
&080
8092

APPENDIX 4

THE COMPLETE SET OF 780
INSTRUCTION CODES

OPCODES MNEMONICS

8E ADC A,(HL)

DD 8E 05 ADC A, (IX+d)

FD 8E 05 ADC A,(IY+d)

8F ADC A A

88 ADC AB

89 ADC A.C

8A ADC A,D

8B ADC AE

8C ADC AH

8D ADC AL

CE 20 ADC An

ED 4A ADC HL,BC

ED 5A ADC HL,DE

ED 6A ADC HL,HL

ED7A ADC HL,SP

86 ADD A,(HL)

DD 86 05 ADD A, (IX+d)

FD 86 05 ADD A,(IY+d)

87 ADD AA

80 ADD A.B

81 ADD A.C

82 ADD A.D

83 ADD A E

84 ADD AH
ADD AL

C6 20 ADD An
ADD HL,BC

19 ADD HL,DE

29 ADD HL,HL

39 ADD HL,SP

DD 09 ADD IX,BC

DD 19 ADD IXDE
DD 29 ADD IX,IX

Advanced User Guide

DD 39

E6 20

CB 46
DD CB 05 46
FD CB 05 46

CB 4E
DD CB 05 4E
FD CB 05 4E
CB 4F

CB 56
DD CB 05 56
FD CB 05 56

CB 5E
DD CB 05 5E
FD CB 05 5E
CB 5F

ADD IX,SP
ADD IY,BC
ADD IY,DE
ADD IY,IY

ADD IY,SP

AND (HL)
AND (IX+d)
AND (IY+d)
AND A

AND n

BIT 0,(HL)
BIT 0,(IX+d)
BIT 0,(IY+d)
BIT 0,A
BIT 0.8
BIT 0.C
BIT 0,0
BIT 0.E
BIT OH
BIT oL

BIT 1,(HL)
BIT 1,(1X+d)
BIT 1,(1Y+d)
BIT 1.A
BIT1.B
BIT1.C
BIT1,D

BIT 1.E

BIT 1.H

BIT 1.L

BIT 2,(HL)
BIT 2,(IX+d!
BIT 2,(1Y+d)
BIT 2,A
BIT2,B

BIT 2,C

BIT 2D

BIT 2E

BIT 2.H
BIT2L

BIT 3,(HL)
BIT 3,(1X+d)
BIT 3,(1Y+d)
BIT3,A

234 The Amstrad Notepad

cB 58 BIT3B
CB 59 BIT 3,C
CBS5A BIT 3,0
CB 5B BIT 3,E
CBsC BIT 3,H
CBsD BIT3L
CB 66 BIT 4,(HL)

DD CB 05 66 BIT 4,(1X+d)
FD CB 05 66 BIT 4,(IY+d)
CB 67 BIT4,A

CB 60 BIT4B
CB 61 BIT4,C
CB 62 BIT 4D
CB 63 BIT 4E
CB 64 BIT4H
CB 65 BIT4L

CB 6E BIT 5,(HL)
DD CB 05 6E BIT 5,(IX+d)
FD CB 05 6E BIT 5,(IY+d)

CB 6F BIT5A
CB 68 BIT 5B
CB 69 BIT5,C
CB 6A BIT 5,0
CB 6B BITS5E
CB 6C BIT5H
CcB 6D BIT5.L
CB 76 BIT 6,(HL)

DD CB 05 76 BIT 6,(IX+d)
FD CB 05 76 BIT 6,(1Y+d)
IT 6,A

cB77 Bl

CB 70 BIT6,B
CcB71 BIT6,C
CB72 BIT 6,0
CB73 BIT6,E
CcB74 BIT 6,H
CB75 BIT6,L
CB7E BIT 7,(HL)

DD CB 05 7E BIT 7,(IX+d)
FD CB 05 7E BIT 7,(IY+d)
CB7F Bl

CB 78 BIT7B
CB 79 BIT7.C
CB7A BIT 7,0
CB7B BIT7,E
CB7C BIT 7,H
CB7D BIT7.L
DC 8405 CALL C,nn
FC 84 05 CALL M,nn

D484 05 CALL NC,nn

Advanced User Guide

C4 84 05

CALL NZ,nn
CALL P,nn
CALL PE,nn
CALL PO,nn
CALL Z,nn
CALL nn

CCF

CP (HL)
CP (IX+d)

DEC (HL)
DEC (IX+d)
DEC (IY+d)
DEC A

El

EX (SP),HL
EX (SP),IX
EX (SP).IY

236 The Amstrad Notepad

08 EX AF,AF'

EB EX DE,HL

D9 EXX

76 HALT

ED 46 Mo

ED 56 M1

ED 5E M2

ED 78 INA,(C)

ED 40 IN B,(C)

ED 48 INC,(C)

ED 50 IN D,(C)

ED 58 IN E,(C)

ED 60 IN H,(C)

ED 68 IN L,(C)
INC (HL)

DD 34 05 INC (IX+d)

FD 34 05 INC (1Y+d)

3C INC A

04 INCB

03 INC BC

oc INC C

14 INC D

13 INC DE

1C INCE

24 INCH

23 INC HL

DD 23 INC IX

FD 23 INC IY

2C INC L

33 INC SP

DB 20 INAnN

ED AA IND

ED BA INDR

ED A2 INI

ED B2 INIR

C384 05 nn

E9 JP (HL)

DD ES JP (IX)

FD E9 JP (1Y)

DA 84 05 JP C,nn

FA 84 05 JP M,nn

D2 84 05 JP NC,nn

C284 05 JP NZ,nn

F284 05 JP P,nn

EA 84 05 JP PE,nn

E284 05 JP PO,nn

CA 8405 JP Z,nn

237

Advanced User Guide
382E JRC,e
30 2E JRNC,e
202E JRNZe
28 2E JRZe
18 2E JRe
02 LD (BC),A
12 LD (DE),A
77 LD (HL),A
70 LD (HL),B
il LD (HL),C
72 LD (HL),D
73 LD (HL),E
74 LD (HL).H
75 LD (HL),L
20 LD (HL),n
DD 77 05 LD (IX+d),A
DD 70 05 LD (IX+d),B
DD 71 05 LD (IX+d),C
DD 72 05 LD (IX+d),D
DD 73 05 LD (IX+d),E
DD 74 05 LD (IX+d),H
DD 75 05 LD (IX+d),L
DD 36 05 20 LD (IX+d),n
FD 77 05 LD (IY+d),A
FD 70 05 LD (IY+d),B
FD 71 05 LD (IY+d),C
FD 72 05 LD (IY+d),D
FD 73 05 LD (IY+d),E
FD 74 05 LD (1Y+d),H
FD 75 05 LD (1Y+d),L
FD 36 05 20 LD (IY+d),n
328405 LD (nn),A
ED 43 84 05 LD (nn),BC
ED 53 84 05 LD (nn),DE
228405 LD (nn),HL
DD 22 84 05 LD (nn),IX
FD 22 84 05 LD (nn),IY
ED 73 84 05 LD (nn),SP
0A D A,(B!
1A LD A,(DE)
7E LD A,(HL)
DD 7E 05 LD A,(IX+d)
FD 7E 05 LD A,(IY+d)
3A 8405 LD A,(nn)
TF LDAA
78 LDAB
79 LDAC
7A LD AD
78 LDAE
7 LD AH
ED 57 LDA|

238

The Amstrad Notepad

3E 20
ED 5F
46

DD 46 05
FD 46 05

4D

OE 20

56

DD 56 05
FD 56 05
57

50
51
52
53
54
55

16 20

ED 5B 84 05
118405

5E

DD 5E 05
FD 5E 05
5F

LD An

LD AR

LD B,(HL)
LD B,(IX+d)
LD B(IY+d)
LDBA

LD BB

LD B,C

LD B,D
LDBE
LDBH
LDBL
LDB,n

LD BC,(nn)
LD BC,nn
LD C,(HL)
LD C,(IX+d)
LD C,(1Y+d)
LDCA
LDCB
LbCc,C
LDC,D
LDCE
LDCH
LDCL

LD C,n

LD Di(HL)
LD D,(IX+d)
LD D,(1Y+d)
LDDA
LDD,B
LDD,C

LD D,D

LD DE

LD DH

LD DL
LDD,n

LD DE,(nn)
LD DE,nn
LD E,(HL)
LD E,(IX+d)
LD E,(IY+d)
LDEA
LDE,B
LDE,C
LDE,D
LDE,E

LD EH
LDEL
LDE,n

LD H,(HL)
LD H,(IX+d)
LD H.(1Y+d)
LDHA

Advanced User Guide

60 LD HB

61 LDH.C

62 LDH,D

63 LDHE

64 LDHH

65 LDHL

26 20 LDHn

2A 8405 LD HL,(nn)

2184 05 LD HL,nn

ED 47 LDIA

DD 2A 84 05 LD IX,(nn)

DD 21 84 05 LD IX,nn

FD 2A 84 05 LD IY,(nn)

FD 218405 IY,nn
LD L,(HL)

DD 6E 05 LD L,(IX+d)

FD 6E 05 LD L,(IY+d)

6F LDL,

68 LDLB

69 oLc

6A LDL,D

6B LDLE

6C LDLH

6D LDLL

2E 20 LDL,n

ED 4F LDRA

ED 7B 84 05 LD SP,(nn)

F9 LD SP,HL

DD F9 LD SP,IX

FDF9 LD SP,IY

318405 LD SP,nn

ED A8 LDD

EDB8 LDDR

ED A0 LDI

ED Bo LDIR

ED 44 NEG

00 NOP

B6 OR (HL)

DD B6 05 OR (IX+d)

FD B6 05 OR (1Y+d)
ORA

BO ORB

B1 ORC

B2 ORD

B3 ORE

B4 ORH

B5 ORL

F620 ORn

ED 8B OTDR

240

The Amstrad Notepad

CB 86
DD CB 05 86
FD CB 05 86

CB 8E
DD CB 05 8E
FD CB 05 8E
CB 8F

CB 96
DD CB 05 96
FD CB 05 96

ouT (C).A
OuT (C),B
ouT (C).C
ouT (C).D
ouT (C).E
ouT (C).H
ouT (C).L
OUT (n).A
ouTD

ouTI

POP AF
POP BC
POP DE
POP HL
POP X
POP IY

PUSH AF
PUSH BC
PUSH DE
PUSH HL
PUSH IX
PUSH IY

RES 0,(HL)
RES 0,(IX+d)
RES 0,(IY+d)
RES 0,A
RES 0,8
RES 0,C
RES 0,D
RES 0,E
RES 0,H
RES 0,L

RES 1,(HL)
RES 1,(1X+d)
RES 1,(1Y+d)
RES 1,A
RES 1,8
RES 1,C
RES 1,D
RES 1,E
RES 1,H
RES 1,L

RES 2,(HL)
RES 2,(IX+d)
RES 2,(1Y+d)
ES 2,A
RES 2,B
RES 2,C

241

Advanced User Guide

CB 92 RES 2,D
CB93 RES 2,E

CB 94 RES 2,H

CB 95 RES 2,L

CB 9E RES 3,(HL)
DD CB 05 9E RES 3,(IX+d)
FD CB 05 9E RES 3,(IY+d)
CB9F RES 3,A

CB 98 RES 3,B

CB 99 RES 3,C

CB 9A RES 3,0

CB 9B RES 3,E
CcB9C RES 3,H

CB 9D RES 3,L

CB A6 RES 4,(HL)
DD CB 05 A6 RES 4,(IX+d)
FD CB 05 A6 RES 4,(IY+d)
CB A7 RES 4,A

CB A0 RES 4,B

CB A1 RES 4,C

CB A2 RES 4,0

CB A3 RES 4,E

CB A4 RES 4,H

CB As RES 4,L

CB AE RES 5,(HL)
DD CB 05 AE RES 5,(IX+d)
FD CB 05 AE RES 5,(1Y-+d)
CB AF RES 5,A

CcB RES 5,B

CB A9 RES 5,C

CB AA RES 5,0

CB AB RES 5,E

CB AC RES 5,H

CB AD RES 5,L

CB B6 RES 6,(HL)
DD CB 05 B6 RES 6,(1X+d)
FD CB 05 B6 RES 6,(1Y+d)
CB B7 RES 6,A

CB B0O RES 6,B

CB B1 RES 6,C

CB B2 RES 6,0

CB B3 RES 6,E

CB B4 RES 6,H

CB Bs RES 6,L
CBBE RES 7,(HL)
DD CB 05 BE RES 7,(1X+d)
FD CB 05 BE RES 7,(1Y+d)
CB BF RES 7,A

cB B8 RES 7,B

242 The Amstrad Notepad

cB B9 RES 7.C
CBBA RES 7,0
cB BB RES 7,E
CBBC RES 7,H
CBBD RES7.L
c9 RET
D8 RETC
F8 RETM
Do RET NC
co RET NZ
Fo RET P
E8 RET PE
Eo0 RET PO
RET Z
ED 4D RETI
ED 45 RETN
cB 16 RL (HL)

DD CB 05 16 RL (IX+d)
FDCB 05 16 RL (IY+d)
RLA

CcB17

cB 10 RLB

CB 11 RLC

CB 12 RL D

CB 13 RLE

CB 14 RLH

CB 15 RLL

17 RLA

CB 06 RLC (HL)
DD CB 05 06 RLC (IX+d)
FD CB 05 06 RLC (IY+d)
CB 07

CB 00 RLC B
CB 01 RLCC
CB 02 RLC D
cB o3 RLCE
CB 04 RLCH
CB 05 RLCL
o7 RLCA
ED 6F RLD
CB1E RR (HL)

DD CB 05 1E RR (IX+d)
FDCB 05 1E RR (IY+d)
RRA

CB 1F

CB 18 RR B
CB 19 RRC
CB 1A RRD
CB 1B RRE
CB1C RRH
cB 1D RR L

Advanced User Guide

CB 0E
DD CB 05 OE
FD CB 05 OE

CB Cé6
DD CB 05 C6
FD CB 05 C6
CBC7
CBCo

CBCs

CB CE
DD CB 05 CE
FD CB 05 CE

RRC (HL)
RRC (IX+d)
RRC (IY+d)
RRC A

RST 00H
RST 08H
RST 10H
RST 18H
RST 20H
RST 28H
RST 30H
RST 38H

SBC An
SBC A,(HL)
SBC A,(IX+d)
SBC A,(IY+d)

SBC AB
SBCAC
SBC AD
SBCAE
SBC AH
SBCA,L
SBC HL,BC
SBC HL,DE
SBC HL,HL
SBC HL,SP
SCF

SET 0,(HL)
SET 0,(IX+d)
SET 0,(1Y-+d)
SET 0,A
SET 0B
SET0,C
SET 0,0
SET 0,E
SETOH
SETO.L

SET 1,(HL)
SET 1,(IX+d)
SET 1,(1Y+d)

244

The Amstrad Notepad

CB D6
DD CB 05 D6
FD CB 05 D6

CB DE
DD CB 05 DE
FD CB 05 DE
CB DF

DD CB 05 E6
FD CB 05 E6
CBE7

CB EE
DD CB 05 EE
FD CB 05 EE
CB EF

CB F6
DD CB 05 F6
FD CB 05 F6

SET 2,(HL)
SET 2,(IX+d)
SET 2,(1Y+d)
SET2,A
SET 2,8
SET2,C
SET 2,0
SET 2,E
SET2,H
SET2)L

SET 3,(HL)
SET 3,(IX+d)
SET 3,(1Y+d)
SET 3.A
SET3,B
SET3,C
SET 3D
SET 3,E
SET3H
SET 3L
SET 4,(HL)
SET 4,(IX+d)
SET 4,(1Y+d)
SET 4,A
SET 4,8
SET 4.C
SET 4,0
SET 4,E
SET 4H
SET4,L

SET 5,(HL)
SET 5,(IX+d)
SET 5,(1Y+d)
SET 5,A
SET 5,8
SET5,C
SET 5,0
SET5,E
SET5H
SET5.L

SET 6,(HL)
SET 6,(IX+d)
SET 6,(IY+d)

Advanced User Guide

CBFE
DD CB 05 FE
FD CB 05 FE

CB 26
DD CB 05 26
FD CB 05 26
CcB27

CB 2E

DD CB 05 2E
FD CB 05 2E
Ci

CB 3E
DD CB 05 3E
FD CB 05 3E
CB 3F

CB 38
CB 39
CB3A
CB 3B
CB3C
CB 3D

96
DD 96 05

SET6,A
SET68B
SET6,C
SET 6.0
SET6,E
SET 6H
SET6.L

SET 7,(HL)
SET 7,(IX+d)
SET 7,(IY+d)
SET7.A

SLA (HL)
SLA (1X+d)
SLA (IY+d)
SLAA
SLAB
SLAC
SLAD
SLAE
SLAH
SLAL

SRA (HL)
SRA (IX+d)
SRA (IY+d)
SRA A

SUB (HL)
SUB (IX+d)

246 The Amstrad Notepad

FD 96 05 SUB (IY+d)

97 SUB A

20 SUBB

91 SUBC

92 SUB D

93 SUBE

94 SUBH
SUBL

D6 20 SUBn

AE XOR (HL)

DD AE 05 XOR (IX+d)

FD AE 05 XOR (IY+d)

AF XOR A

A8 XOR B

A9 XOR C

AA XOR D

AB XOR E

AC XOR H

APPENDIX 5

NEW NOTEPAD MODELS

As this book was going to press it was revealed that a new model called the NC150 is
retailing in France and Italy and should be available soon in Britain. It has 512K
ROM and 128K RAM (rather than the 256K ROM and 64K RAM of the NC100).
The extra ROM contains a powerful spreadsheet and an arcade/action game similar in
play to a popular game in which you have to fit falling shapes of different sizes into
the smallest possible space. It is intended that the NC150 will eventually replace the
NC100 as the entry-level model.

In addition, an NC200 should be launched by the time you read this. This machine
will be further enhanced to include not only the additional features of the NC150 but
also a PC-compatible 3.5in floppy disk drive and an increase in screen size from 8 to
16 lines by 80 characters - along with a back light to make it easier to read the
display.

The back light can be toggled on and off but files cannot be written to or read directly
from the floppy disk. Rather, the external drive has been designed as a backup
mechanism for storing files or transferring them to a PC.

To do this, an extra option has been added to the menu displayed when you press
[Function][L] to list files. This allows you to tag files using [Space] and then transfer
them in bulk to and from a floppy disk. However, the floppy disk transfer functions
are not available when the file selector is called from BBC Basic.

The main difference that programmers will have to cater to is direct screen addressing
and Basic programs that only use eight lines (or 64 pixels depth). With regard to the
memory map, when paging in the display ram, just remember that the bottom eight
screen lines are effectively the same as the standard eight lines on the NC100.

To address the top eight lines you would start reading and writing to address &E000,
as the screen now takes up addresses &E000-&FFFF when the 16K RAM display
memory block is mapped in at &C000. Will we see addresses &C000-&DFFF used
for future increases in screen resolution? Let’s hope so. Particularly seeing as the
NC200 folds open like a laptop and there should now be room for the larger screen
area.

APPENDIX 6

EXTRAS

GET CONNECTED WITH LAPCAT

In order for you to transfer and backnp programs between your Notepad and a
desktop the Lapcat ions software and lead is now available for
the following computers:

QIBM and PC Compatibles

Q Commodore Amiga

Q Atari ST and TT

Q Amstrad PCW

Q A version for the Archimedes is planned

The price is £40 (valid throughout Europe)

EXPAND YOUR NOTEPAD WITH A RAM CARD

Now you can increase the storage area available on your Notepad by up to a
megabyte with a RAM card. These are available in 64K, 128K, 256K, 512K, or IMb
sizes. Please call for the current prices.

SAVE THE WEAR AND TEAR ON YOUR FINGERS -
ORDER THE DISK OF THE BOOK

If you would like a copy of all the programs featured in this book, they are available
for a range of computers on floppy disk for just £10. But remember you will need to
have a copy of the Lapcat software and lead in order to transfer them to your

Notepad.

Advanced User Guide 249

ORDER FORM (may be photocopied)
Please send me:

[] The Lapcat software and lead, (£40.00)

[] The program disk of this book, (£10.00)

For the following format:

] IBM and Compatible

] Commodore Amiga

] Atari ST and TT

] Amstrad PCW
Disk Size: []3.5" [1525"

[]1Ienclose a Cheque/PO for £. 0

[] Please charge my Access/Visa card
Credit card number:

Post Code: T

Send to: Notepad Offer, Arnor Ltd., 611 Lincoln Road, Peterborough, Cambs,
PE1 3HA. Tel: 0733 68909 (24 hours). Fax: 0733 67299.

Index

A CHART.BAS, 22
A%, 126 checker, style, 75
abstract nouns, 75 clear, 15
additive, food, 47 clock,
address book, 179 functions, 169
ASCIL, 23, 123 real time, 156
assembler, 186 world, 88
assembly, code,

language, 100 ASCII, 23

Offset, 125 decimal, 23
AUTO, 3, 185 scan, 230

COLI, 160, 226

B COLITEXT, 161, 226
B%, 126 compiler, Turbo C, 134
bank switch, 152 conversion scales, 68
Basic, BBC, 1, 185 COOKIE.BAS, 26
‘battery, memory, 155
baud, 229 D

rate, 154 D%, 126
BBC Basic, 1, 185 decimal, 23
BIOMON.BAS, 6 DEF, 126
biorhythm, 6 DEFB, 126
book, companion disk to, 248 DEFM, 126

DEFW, 126

C DEVILBAS, 33
C%, 126 diary, 179
CALC.BAS, 12 disassembler, 101
calculator, 12 . Z80,

loan, 58 disk, of the book, 248
CALL, 126 display, 229
card, 229 LCD, 146

memory, 154, 155 page, 130

RAM, 24 drawing, line, 130
channels, sound, 154 DU, 132

dumps, screen, 134

Advanced User Guide

251

external programs, 145

¥
F%, 126
FCLOSE, 172, 226
FDATESTAMP, 178, 226
FERASE, 173, 226
FGETATTR, 178, 226
files,
10,172
selector, 101, 131
transfer, 129
system, 179
FINBLOCK, 173, 226
FINCHAR, 173, 226
FINDFIRST, 173, 226
FINDNEXT, 174, 226
Flesch-Kincaid, 75
Fog, 75

FOPENOUT, 174, 226
FOPENUP, 175, 226
fortune cookie, 26
FOUTBLOCK, 175, 226
FOUTCHAR, 175, 226
FRENAME, 176, 226
FSEEK, 176, 226
FSETATTR, 179, 226
FSIZE, 176, 225, 226
FSIZEHANDLE, 177, 226
FTELL, 177, 226
FTESTEOF, 177, 226
functions, clock, 169

H

H%, 126
HEAPADDRESS, 170, 226

HEAPLOCK, 171,227

HEAPMAXFREE, 172, 227
HEAPREALLOC, 172, 227
hexadecimal, 22

‘hidden verbs, 75

HIMEM, 185

1

1/0, file, 172

INKEY BAS, 56

INKEY emulator, 56

input, 151

input/output, 151
file, 172

interface, pmllel. 154
interrupt, 155
1RQ, 229

status, 155

J
jumpblock, 157

K
key, 229
keyboard, 156, 158

scan codes, 230
KMCHARRETURN, 158, 227
KMGETYELLOW, 180, 227
KMREADKBD, 158, 227
KMSETEXPAND, 159, 227
KMSETTICKCOUNT, 159, 227
KMSETYELLOW, 180, 227
KMWAITKBD, 159, 227

L

L%, 126

language, uscmbly‘ 100
LAPCAT, 187,

LAPCAT- RECEIVE 180
LAPCAT_RECEIVE, 227
LAPCAT_SEND, 181, 227
LCD display, 146

line drawing, 130

list, 123

Loan calculator, 58
lock-outs, 186

LOMEM, 185

M
MACRO, 129
management, memory, 152

252 The Amstrad Notepad
‘map, memory, 151 print, 22
MCPRINTCHAR, 166, 227 programs, external, 145
MCREADYPRINTER, 166, 227
MCSETPRINTER, 166, 227 R
‘memory, 229 RAM, 100
card, 154 card, 187, 248
card/battery, 155 rate, baud, 154
functions, 170 READBUEF, 160, 227
management, 152 READYREC.BAS, 61
map, 151 real time clock, 156
MM, 132 reconciler, statement, 61
mortgage, 59 ROMs, 100
MORTGAGE BAS, 58 RTC, 229
rules, three golden, 2
N un, 6
NC150, 247
NC200, 247 N
Notepad, new models, 247 save, 122

nouns, abstract, 75

o

Offset Assembly, 125, 145
ON ERROR, 185

OPT. 123

output, 151

P
PADGETTICKER, 169, 227
PADGETTIME, 169, 227
PADGETVERSION, 181, 227
PADINITSERIAL, 167, 227
PADINSERIAL, 167, 227
PADOUTPARALLEL, 167, 227
PADOUTSERIAL, 167, 227
PADREADYPARALLEL, 168, 227
PADREADYSERIAL, 168, 227
PADRESETSERIAL, 168, 227
PADSERIALWAITING, 169, 227
PADSETALARM, 170, 227
PADSETTIME, 170, 227
PAGE, 185
page display, 130
parallel interface, 154
parallel port, 229

functions, 166
passive verbs, 79
PCMCIA, 145, 146
PCX, 134

port,
parallel, 166, 229
serial, 166

POST (Power On Self-Test), 133
power, 155, 229

SCALES.BAS, 68
scales, conversion, 68
screen, 134, 160
Gumps, 134
SELECTFILE, 177, 227

sentences, complex, 75
serial port functions, 166
SETDTA, 178, 227
sound channels, 154
speaker, 229
*SPOOL, 122
statement reconciler, 61
status, irq, 155
STYLEBAS, 75
style checker, 75
system,

files, 179

variables, 182, 185

T

TASM, 146
TESTESCAPE, 160, 227
TEXTOUT, 161, 227
TEXTOUTCOUNT, 161, 227
TIFF, 134
TIMEZONE.BAS, 88
TOP, 185

Towers of Hanoi, 33
TRACE, 185

transfer, file, 129

Turbo C compiler, 134
TXTBOLDOFF, 164, 228
TXTBOLDON, 164, 228

Advanced User Guide

253

TXTCLEAR'WINDOW, 161, 228
TXTCUROFF, 162, 228
TXTCURON, 162, 228
‘TXTGETCURSOR, 162, 228
TXTGETWINDOW, 162, 228
TXTINVERSEOFF, 165, 228
TXTINVERSEON, 165, 228
TXTOUTPUT, 163, 228

TXTUNDERLINEON, 165, 228
TXTWRCHAR, 164, 228

14
UART, 156, 229
USR, 126

\4
variables, system, 182, 185

vdu, 22

verbs,
hidden, 75
passive, 75

w

world clock, 88
X

X%, 126

Y
Y%, 126

Z

Z80,
disassembler, 100
instruction codes, 232
instruction set, 188

ZAPBAS, 100

Words for the wise - from
Sigma Press

S%:\a publish what is probably the widest range of com) ‘ggmr books from any independent UK
lisher. And that's not ju JM st for the PC, but for many other popular micros — Atari, Amiga and

Amhlmedes —and for software puckag-s that are widely-used in the UK and Europe, including

Timeworks, Deskpress, Sa&ewk Manager and many more. We also publish a whole

rangel of professional-level s for urz‘%ics as far apart as IBM mainframes, UN|X. computer

translation,

A campleh catalogue is available, but here are some of the highlights:

Amstrad PCW
The Complete Gulide to LocoScript and Amstrad PCW Computers — Hughes - £12.95
Looosaﬂ ting People — Clnamn and cluyton - £12.9!
e PCW LOGO Manual ~ £12.
Plctllll Processing on the Amm PCW Gilmore — £12.95
See also Programming section for Mini Office

Archimedes
A Bo&lmw’t Guldt to WIMP Programming - Fox - £12.95
See also: Desktop Publishing on the Archimedes and Archimedes Game Maker's Manual
Artificial Intelligence
Bulld Your Own Expert System - Naylor - £11.95
Computational Linguistics — McEnery - £14.95
Introducing Neural Networks — Camnq £14.95
Beglnners Guides
mputing under Protest! - Croucher - £12.95
Alonl with a PC - Bradley - £12.95
The New User's Mac Book — Wilson —
PC Computing for Absolute Boginmn Edwards £12.95

DTP and Graphics
Designworks Companion — Whale -
lentura to Quark XPress for the Pc W|Imore £19.95
Timeworks Publisher Companion — Morrissey — £12.95
Timeworks for Windows Companion - Sinclair - £14.95
laoPlnl Publisher Companlon - Sinclair - £12.95

Express Publisher DTP Companlon - Sinclair ~ £14.95
Am a Real-Time 3D Graphics — Tyler - £14.95

Real-Time 3D Graphics — Tyler - £12.95

Eurapean and US Software Packages
Mastering Money Manager PC - Sinclair - £12.95
Using sagn s«- ing In Business — Woodford - £12.95
Mastering Masterflie PC - Sinclair - £12.95
All-in-One Bt m Computing (Mini Office Professional) ~ Hughes - £12.95
Game Maklngnand Playing

|gb£ £1295
Imodn Game Mal null Ium £14.95

Atarl Game Maker's M
Amiga Game Mak
Adventure Gamer's Manual - Redrup - £12.05

General
Muslc and New Technology — Georghiades and Jacobs — £12.95
Getting the Best from your Amstrad Notepad — Wilson — £12.95
COvnpuurs lnd Chaos (Atari and Amiga editions) — Bessant — £12.95
mputers in Genealogy — Isaac — £12.95
Mulﬂmﬂdll CD-ROM and Compact Disc — Botto — £14.95
Advanced hlnulachlrlnq Technology — Zairi - £14.95
Networks
$25 Network User Guide - Sinclair - £12.95
integrated Digital Networks — Lawton - £24.95
Novell Netware Companion — Croucher - £16.95
PC O ing S and A, hitecture
Wnrklng with Windows 3 = Sinclair - £16.
Sor\dcln and Supponlng IBM PCs and Companbles Moss — £16.95
Book — Croucher — £16.
IIS-DOS Revealed — Last — £12. 95
PC Architecture and Assembly Langu “;e Kauler - £16.95
F % rammer’s Technical Reference — -£19.95
MS-DOS File and Program Control — Slnclan - £1295
Mastering DesqView — Sinclair - £12.95
ngrammmg
Applications lerary Pugh - £16.95
nn MS-DOS Assembler — Sinclair — £12.
derstanding Occam and the transputer — Elllson £1295
Proqnmnlng in ANSI Standard C — Horsington — £14.95
T-mmmg In Microsoft Visual Basic — Penfold — £16.95
Amstrad PCW

For

UNIX and malnlrames

UNIX - The Book — Banal ind Rutter — £11.95
UNIX - The Complete Gul Idn - Mangar - £19.95
RPG on the IBM AS/400 - Tomlinson — £24.95

HOW TO ORDER
Prices correct for 1993.
Order these books from your usual bookshop, or direct from:
SIGMA PRESS,
SOUTH OAK LANE,
W|LMSLOW CHESHIRE, SK9 6AR
PHONE: 0625 - 531035; FAX: 0625 — 536800
PLEASE ADD £1 TOWARDS POST AND PACKING FOR ONE BOOK.
POSTAGE IS FREE FOR TWO OR MORE BOOKS.
OVERSEAS ORDERS: please pay by credit card; we will add airmail postage at actual cost
CHEQUES SHOULD BE MADE PAYABLE TO SIGMA PRESS.

ACCESS AND VISA WELCOME ~ 24 HOUR ANSWERPHONE SERVICE.

o=

85058-515-6

50

585152

15BN 1-
7818

